Solar-induced fluorescence (SIF) has been empirically linked to gross primary productivity (GPP) in multiple ecosystems and is thus a promising tool to address the current uncertainties in carbon fluxes at ecosystem to continental scales. However, studies utilizing satellite-measured SIF in South America have concentrated on the Amazonian tropical forest, while SIF in other regions and vegetation classes remain uninvestigated. We examined three years of Orbiting Carbon Observatory-2 (OCO-2) SIF data for vegetation classes within and across the six Brazilian biomes (Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal) to answer the following: (1) how does satellite-measured SIF differ? (2) What is the relationship (strength and direction) of satellite-measured SIF with canopy temperature (T can ), air temperature (T air ), and vapor pressure deficit (VPD)? (3) How does the phenology of satellite-measured SIF (duration and amplitude of seasonal integrated SIF) compare? Our analysis shows that OCO-2 captures a significantly higher mean SIF with lower variability in the Amazon and lower mean SIF with higher variability in the Caatinga compared to other biomes. OCO-2 also distinguishes the mean SIF of vegetation types within biomes, showing that evergreen broadleaf (EBF) mean SIF is significantly higher than other vegetation classes (deciduous broadleaf (DBF), grassland (GRA), savannas (SAV), and woody savannas (WSAV)) in all biomes. We show that the strengths and directions of correlations of OCO-2 mean SIF to T can , T air , and VPD largely cluster by biome: negative in the Caatinga and Cerrado, positive in the Pampa, and no correlations were found in the Pantanal, while results were mixed for the Amazon and Atlantic Forest. We found mean SIF most strongly correlated with VPD in most vegetation classes in most biomes, followed by T can . Seasonality from time series analysis reveals that OCO-2 SIF measurements capture important differences in the seasonal timing of SIF for different classes, details masked when only examining mean SIF differences. We found that OCO-2 captured the highest base integrated SIF and lowest seasonal pulse integrated SIF in the Amazon for all vegetation classes, indicating continuous photosynthetic activity in the Amazon exceeds other biomes, but with small seasonal increases. Surprisingly, Pantanal EBF SIF had the highest total integrated SIF of all classes in all biomes due to a large seasonal pulse. Additionally, the length of seasons only accounts for about 30% of variability in total integrated SIF; thus, integrated SIF is likely captures differences in photosynthetic activity separate from structural differences. Our results show that satellite measurements of SIF can distinguish important functioning and phenological differences in vegetation classes and thus has the potential to improve our understanding of productivity and seasonality in the tropics.
Accurately quantifying forest aboveground biomass (AGB) is one of the most significant challenges in remote sensing, and is critical for understanding global carbon sequestration. Here, we evaluate the effectiveness of airborne LiDAR (Light Detection and Ranging) for monitoring AGB stocks and change (ΔAGB) in a selectively logged tropical forest in eastern Amazonia. Specifically, we compare results from a suite of different modelling methods with extensive field data. The calibration AGB values were derived from 85 square field plots sized 50 × 50 m field plots established in 2014 and which were estimated using airborne LiDAR data acquired in 2012, 2014, and 2017. LiDAR-derived metrics were selected based upon Principal Component Analysis (PCA) and used to estimate AGB stock and change. The statistical approaches were: ordinary least squares regression (OLS), and nine machine learning approaches: random forest (RF), several variations of k-nearest neighbour (k-NN), support vector machine (SVM), and artificial neural networks (ANN). Leave-one-out cross-validation (LOOCV) was used to compare performance based upon root mean square error (RMSE) and mean difference (MD). The results show that OLS had the best performance with an RMSE of 46.94 Mg/ha (19.7%) and R² = 0.70. RF, SVM, and ANN were adequate, and all approaches showed RMSE ≤54.48 Mg/ha (22.89%). Models derived from k-NN variations all showed RMSE ≥64.61 Mg/ha (27.09%). The OLS model was thus selected to map AGB across the time-series. The mean (±sd—standard deviation) predicted AGB stock at the landscape level was 229.10 (±232.13) Mg/ha in 2012, 258.18 (±106.53) in 2014, and 240.34 (sd ± 177.00) Mg/ha in 2017, showing the effect of forest growth in the first period and logging in the second period. In most cases, unlogged areas showed higher AGB stocks than logged areas. Our methods showed an increase in AGB in unlogged areas and detected small changes from reduced-impact logging (RIL) activities occurring after 2012. We also detected that the AGB increase in areas logged before 2012 was higher than in unlogged areas. Based on our findings, we expect our study could serve as a basis for programs such as REDD+ and assist in detecting and understanding AGB changes caused by selective logging activities in tropical forests.
Abstract. Recently, remotely sensed measurements of the near-infrared reflectance (NIRv) of vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of vegetation have emerged as indicators of vegetation structure and function with potential to enhance or improve upon commonly used indicators, such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and biodiversity, has been limited. In particular, fine-scale spatial and temporal heterogeneity of structure and physiology may contribute to variation in these indices and the properties that are presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR). In this study, fine-scale (approx. 15 cm) tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad and by lidar-derived height is investigated and compared to NIRv and EVI using unoccupied aerial system (UAS)-based hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and NIRvrad captured the greatest spatiotemporal variability, followed by the enhanced vegetation index (EVI) and then the normalized difference vegetation index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of all indicators was driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree crowns. NIRv, FCVI, NIRvrad, and EVI captured variability at smaller spatial scales (∼ 50 m) than NDVI (∼ 90 m) and the lidar-based surface model (∼ 70 m). We show that spatial and temporal patterns of NIRv and FCVI were virtually identical for a dense green canopy, confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not require separate irradiance measurements, correlated more strongly with GPP and PAR than did other indicators. NIRv, FCVI, and NIRvrad, which are related to canopy structure and the radiation regime of vegetation canopies, are promising tools to improve understanding of tropical forest canopy structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.