Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The reactive surface sites of MoS2 hydrotreating catalysts (unpromoted as well as Co-and Ni-promoted) supported on MgAl2O4 spinel were investigated with respect to the substitution of sulfur by oxygen using in-situ XAS coupled with modulation excitation spectroscopy (MES). Specifically, MES experiments were carried out by periodically cycling between a H2O and H2S containing hydrogen gas mixture at 400 °C. Due to the low fraction of SO exchange, conventional XANES and EXAFS data hardly showed any changes when these catalysts were exposed to increasing ratios of H2O to H2S in an H2 atmosphere. XANES and EXAFS data extracted at the Mo K-edge by MES analysis showed that for approximately 1 % of the Mo atoms, sulfur atoms are replaced by oxygen atoms when exposed to H2O, causing partial oxidation of these active sites. The reaction is reversible and Mo returns to its initial sulfide phase when H2O is removed and H2S is supplied in the feed. In case of Co-and Ni-promoted catalysts, the magnitude of SO exchange was found to be reduced, indicating the beneficial effect of promotion. MES at the Ni K-edge showed that Ni was oxidized during H2O exposure, which in turn delayed the Mo oxidation in the Ni-promoted catalyst. The structure of these catalysts under SO exchange were modelled using density functional theory (DFT) calculations, showing that the edge atoms are affected strongly. For all three catalysts, OH substitution is more favorable, while O substitution could be possible at high H2O pressure for unpromoted MoS2. Mo K-edge XANES spectra calculated using these simulated structures support the results obtained from the MES experiments. The presented approach using MES in combination with XAS and supported by DFT can be extended in general to catalysts under operando conditions, and is thus a useful tool for determination of the active site on an atomic-scale.
This study provides new insights into sustainable fuel production by upgrading bio-derived oxygenates by catalytic hydrodeoxygenation (HDO). HDO of ethylene glycol (EG), cyclohexanol (Cyc), acetic acid (AcOH), and phenol (Phe) was investigated using a Ni-MoS2/MgAl2O4 catalyst. In addition, HDO of a mixture of Phe/EG and Cyc/EG was studied as a first step towards the complex mixture in biomass pyrolysis vapor and bio-oil. Activity tests were performed in a fixed bed reactor at 380–450 °C, 27 bar H2, 550 vol ppm H2S, and up to 220 h on stream. Acetic acid plugged the reactor inlet by carbon deposition within 2 h on stream, underlining the challenges of upgrading highly reactive oxygenates. For ethylene glycol and cyclohexanol, steady state conversion was obtained in the temperature range of 380–415 °C. The HDO macro-kinetics were assessed in terms of consecutive dehydration and hydrogenation reactions. The results indicate that HDO of ethylene glycol and cyclohexanol involve different active sites. There was no significant influence from phenol or cyclohexanol on the rate of ethylene glycol HDO. However, a pronounced inhibiting effect from ethylene glycol on the HDO of cyclohexanol was observed. Catalyst deactivation by carbon deposition could be mitigated by oxidation and re-sulfidation. The results presented here demonstrate the need to address differences in oxygenate reactivity when upgrading vapors or oils derived from pyrolysis of biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.