This paper presents a deep learning model to address the problem of recognition of animals and plants. The context of this work is to make an effort in protection of rare species that are seriously faced to the risk of extinction in Vietnam such as Panthera pardus, Dalbergia cochinchinensis, Macaca mulatta. The proposed approach exploits the advanced learning ability of convolutional neural networks and Inception residual structures to design a lightweight model for classification task. We also apply the transfer learning technique to fine-tune the two state-of-the-art methods, MobileNetV2 and InceptionV3, specific to our own dataset. Experimental results demonstrate the superiority of our object predictor (e.g., 95.8% accuracy) in comparison with other methods. In addition, the proposed model works very efficiently with the inference speed of around 113 FPS on a CPU machine, enabling it for deployment on mobile environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.