Aim: To validate and implement Monte Carlo simulation using PRIMO code as a tool for checking the credibility of measurements in LINAC initial commissioning and routine Quality Assurance (QA). Relative and absolute doses of 6 MV photon beam from TrueBeam STx Varian Linear Accelerator (LINAC) were simulated and validated with experimental measurement, Analytical Anisotropic Algorithm (AAA) calculation, and golden beam. Methods and Materials: Varian phase-space files were imported to the PRIMO code and four blocks of jaws were simulated to determine the field size of the photon beam. Water phantom was modeled in the PRIMO code with water equivalent density. Golden beam data, experimental measurement, and AAA calculation results were imported to PRIMO code for gamma comparison. Results: PRIMO simulations of Percentage Depth Dose (PDD) and in-plane beam profiles had good agreement with experimental measurements, AAA calculations and golden beam. However, PRIMO simulations of cross-plane beam profiles have a better agreement with AAA calculation and golden beam than the experimental measurement. Furthermore, PRIMO simulations of absolute dose agreed well with experimental results with ±0.8% uncertainty.
Conclusion:The PRIMO code has good accuracy and is appropriate for use as a tool to check the credibility of beam scanning and output measurement in initial commissioning and routine QA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.