Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies of strains carrying mutations in nhr-80 and in the three genes encoding delta-9 desaturases, fat-5, fat-6, and fat-7. The delta-9 desaturase single mutants display only subtle changes in fatty acid composition and no other visible phenotypes, yet the fat-5;fat-6;fat-7 triple mutant is lethal, revealing that endogenous production of monounsaturated fatty acids is essential for survival. In the absence of FAT-6 or FAT-7, the expression of the remaining desaturases increases, and this ability to compensate depends on NHR-80. We conclude that, like mammals, C. elegans requires adequate synthesis of unsaturated fatty acids and maintains complex regulation of the delta-9 desaturases to achieve optimal fatty acid composition.
Monounsaturated fatty acids are essential components of membrane and storage lipids. Their synthesis depends on the conversion of saturated fatty acids to unsaturated fatty acids by D9 desaturases. Caenorhabditis elegans has three D9 desaturases encoded by the genes fat-5, fat-6, and fat-7. We generated nematodes that display a range of altered fatty acid compositions by constructing double-mutant strains that combine mutations in fat-5, fat-6, and fat-7. All three double-mutant combinations have reduced survival at low temperatures. The fat-5;fat-6 double mutants display relatively subtle fatty acid composition alterations under standard conditions, but extreme fatty acid composition changes and reduced survival in the absence of food. The strain with the most severe defect in the production of unsaturated fatty acids, fat-6;fat-7, exhibits slow growth and reduced fertility. Strikingly, the fat-6;fat-7 double-mutant animals have decreased fat stores and increased expression of genes involved in fatty acid oxidation. We conclude that the D9 desaturases, in addition to synthesizing unsaturated fatty acids for properly functioning membranes, play key roles in lipid partitioning and in the regulation of fat storage.
Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.
Ether lipids are widespread in nature, and they are structurally and functionally important components of membranes. The roundworm, Caenorhabditis elegans, synthesizes numerous lipid species containing alkyl and alkenyl ether bonds. We isolated C. elegans strains carrying loss-of-function mutations in three genes encoding the proteins required for the initial three steps in the ether lipid biosynthetic pathway, FARD-1/FAR1, ACL-7/GNPAT, and ADS-1/AGPS. Analysis of the mutant strains show that they lack ether lipids, but possess the ability to alter their lipid composition in response to lack of ether lipids. We found that increases in de novo fatty acid synthesis and reduction of stearoyl- and palmitoyl-CoA desaturase activity, processes that are at least partially regulated transcriptionally, mediate the altered lipid composition in ether lipid-deficient mutants. Phenotypic analysis demonstrated the importance of ether lipids for optimal fertility, lifespan, survival at cold temperatures, and resistance to oxidative stress.Caenorhabditis
Purpose: Functional evidence is a pillar of variant interpretation according to ACMG guidelines. Functional evidence can be obtained in a variety of models and assay systems, including patient-derived tissues and iPSCs, in vitro cellular assays, and in vivo assays. Here we evaluate the reliability and practicality of variant interpretation in the small animal model, C. elegans, through a series of experiments evaluating the function of syntaxin binding protein, STXBP1, a well-known causative gene for Early infantile epileptic encephalopathy 1 (EIEE1). Methods: Using CRISPR, we replaced the coding sequence for unc-18 with the coding sequence for the human ortholog STXBP1. Next, we used CRISPR to introduce precise point mutations in the human STXBP1 coding sequence, reflecting three clinical categories (benign, pathogenic, and variants of uncertain significance (VUS)). We quantified 26 features of the resulting worms movement to train Random Forest (RF) and Support Vector Machines (SVM) machine learning classifiers on known pathogenic and benign variants. We characterized the classifiers, and then used the behavioral data from the VUS-expressing animals to predict the categorization of the VUS. Results: Whereas knock-out worms without unc-18 are severely impaired in motor function, worms expressing STXBP1 in its place have restored motor function. We produced worms with STXBP1 variants previously classified by ACMG criteria, including 25 benign variants, 32 pathogenic, and 24 variants of uncertain significance (VUS). Using either SVM or RF classifiers, we were able to obtain a sensitivity of 0.84-0.97 on known benign and pathogenic strains. By comparing multiple ML classification methods, we were able to classify 9 of the VUS as functionally abnormal, suggesting that these VUS are likely to be pathogenic. Conclusions: We demonstrate that automated analysis of a small animal system is an effective, scalable, and fast way to understand functional consequences of variants in STXBP1, one of the most common causes of genetic epilepsies and neurodevelopmental disorders. Keywords: STXBP1, C. elegans, CRISPR, Unc-18
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.