The current outbreak of Ebola virus (EBOV) in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled1. Several postexposure interventions have been employed under compassionate use to treat a number of patients repatriated to Europe and the United States2. However, the in vivo efficacy of these interventions against the new outbreak strain of EBOV is unknown. Here, we show that lipid nanoparticle (LNP)-encapsulated siRNAs rapidly adapted to target the Makona outbreak strain of EBOV are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days postexposure while animals were viremic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal hematology, blood chemistry, and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered while the untreated control animals succumbed. These results represent the first successful demonstration of therapeutic anti-EBOV efficacy against the new outbreak strain in nonhuman primates (NHPs) and highlight the rapid development of LNP-delivered siRNA as a countermeasure against this highly lethal human disease.
The recent emergence and rapid geographic expansion of Zika virus (ZIKV) poses a significant challenge for public health. Although historically causing only mild febrile illness, recent ZIKV outbreaks have been associated with more severe neurological complications, such as Guillain-Barré syndrome and fetal microcephaly. Here we demonstrate that two contemporary (2015) ZIKV isolates from Puerto Rico and Brazil may have increased replicative fitness in human astrocytoma cells. Over a single infectious cycle, the Brazilian isolate replicates to higher titers and induces more severe cytopathic effects in human astrocytoma cells than the historical African reference strain or an early Asian lineage isolate. In addition, both contemporary isolates induce significantly more double-stranded RNA in infected astrocytoma cells, despite similar numbers of infected cells across isolates. Moreover, when we quantified positive- and negative-strand viral RNA, we found that the Asian lineage isolates displayed substantially more negative-strand replicative intermediates than the African lineage isolate in human astrocytoma cells. However, over multiple rounds of infection, the contemporary ZIKV isolates appear to be impaired in cell spread, infecting a lower proportion of cells at a low MOI despite replicating to similar or higher titers. Taken together, our data suggests that contemporary ZIKV isolates may have evolved mechanisms that allow them to replicate with increased efficiency in certain cell types, thereby highlighting the importance of cell-intrinsic factors in studies of viral replicative fitness.
Hepatitis delta virus (HDV) infects 10−20 million individuals worldwide and causes severe fulminant hepatitis with high likelihood of cirrhosis and hepatocellular carcinoma. HDV infection cannot occur in the absence of the surface antigen (HBsAg) of the hepatitis B virus. RNA interference is an effective mechanism by which to inhibit viral transcripts, and siRNA therapeutics sharing this mechanism have begun to demonstrate clinical efficacy. Here we assessed the outcome of HBV-targeting siRNA intervention against HDV and compared it to a direct anti-HDV siRNA approach in dually infected humanized mice. Treatment with ARB-1740, a clinical stage HBV-targeting siRNA agent delivered using lipid nanoparticle (LNP) technology, effectively reduced HBV viremia by 2.3 log 10 and serum HBsAg by 2.6 log 10 , leading to 1.6 log 10 reduction of HDV viremia. In contrast, HDV-targeting siRNA inhibited HDV in both blood and liver compartments without affecting HBV and PEGylated interferon-alpha reduced HBV viremia by 2.0 log 10 but had no effect on HDV viremia under these study conditions. These results illustrate the inhibitory effects of siRNAs against these two viral infections and suggest that ARB-1740 may be of therapeutic benefit for hepatitis delta patients, a subpopulation with high unmet medical need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.