We use highly a focused laser beam incident on a carbon coated coverslip to create microcavitation. Full optical control of the radii of the bubbles is attained. Multiple bubbles can also be created and their size changed independently. The dynamics of such multi-bubble systems are studied. These bubble systems generate strong flows such as Marangoni convection and also large thermal gradients. Since the size of the micro-bubbles is highly dependent on the temperature, we anticipate that these systems can be used for precise temperature control of samples. These methods are of use when the knowledge of exact and local temperature profiles are of importance. Furthermore, since bubble expansion can generate orders of magnitude more force than conventional optical tweezers, systems have application in manipulation of particles where large forces are required. We present methods based on optical tweezers for using the generated bubbles as thermal sensors and as opto-mechanical transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.