Engineered remediation technologies such as denitrifying bioreactors target single contaminants along a nutrient transfer continuum. However, mixed contaminant discharges to a water body are more common from agricultural systems. Indeed, evidence presented herein indicates that pollution swapping within denitrifying bioreactor systems adds to such deleterious discharges. The present paper proposes a more holistic approach to contaminant remediation on farms, moving from the use of 'denitrifying bioreactors' to the concept of a 'permeable reactive interceptor' (PRI). Besides management changes, a PRI should contain additional remediation cells for specific contaminants in the form of solutes, particles or gases. Balance equations and case studies representing different geographic areas are presented and used to create weighting factors. Results showed that national legislation with respect to water and gaseous emissions will inform the eventual PRI design. As it will be expensive to monitor a system continuously in a holistic manner, it is suggested that developments in the field of molecular microbial ecology are essential to provide further insight in terms of element dynamics and the environmental controls on biotransformation and retention processes within PRIs. In turn, microbial and molecular fingerprinting could be used as an in-situ cost-effective tool to assess nutrient and gas balances during the operational phases of a PRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.