Developing spatially explicit permafrost datasets and climate assessments at scales relevant to northern communities is increasingly important as land users and decision makers incorporate changing permafrost conditions in community and adaptation planning. This need is particularly strong within the discontinuous permafrost zone of the Northwest Territories (NWT) Canada where permafrost peatlands are undergoing rapid thaw due to a warming climate. Current data products for predicting landscapes at risk of thaw are generally built at circumpolar scales and do not lend themselves well to fine-scale regional interpretations. Here, we present a new permafrost vulnerability dataset that assesses the degree of permafrost thaw within peatlands across a 750 km latitudinal gradient in the NWT. This updated dataset provides spatially explicit estimates of where peatland thermokarst potential exists, thus making it much more suitable for local, regional or community usage. Within southern peatland complexes, we show that permafrost thaw affects up to 70% of the peatland area and that thaw is strongly mediated by both latitude and elevation, with widespread thaw occuring particularly at low elevations. At the northern end of our latitudinal gradient, peatland permafrost remains climate-protected with relatively little thaw. Collectively these results demonstrate the importance of scale in permafrost analyses and mapping if research is to support northern communities and decision makers in a changing climate. This study offers a more scale-appropriate approach to support community adaptative planning under scenarios of continued warming and widespread permafrost thaw.
Ecohydrological functioning of natural Boreal forest in Canada's Boreal Plains is a product of interactions between soil hydrophysical characteristics and hydrogeochemical processes. These interactions create a moisture–nutrient gradient within the surface soils, increasing along low‐relief transitions from upland to riparian zone, and in turn influence the distribution of vegetation communities. It is not yet known if/when analogous ecohydrological functions can be achieved in constructed uplands following industrial disturbance, such as that following oil sands development. Hence, to assess this, we studied interactions between hydrogeochemical processes and vegetation colonization in a constructed upland relative to hydrophysical properties of 2 reclamation cover substrates during a typical continental climate's growing season. Our results indicated that in 3 years of postconstruction, the establishment of a moisture–nutrient gradient that supports vegetation colonization along slope positions was still limited by heterogeneity of cover substrates. Portions of the upland under peat–mineral mix were characterized by lower nutrient availability, high moisture content, and establishment of planted shrubs and trees. In contrast, forest floor materials plots were characterized by poor soil quality, but higher nutrient availability and greater colonization of invasive grasses and native shrubs. We suggest that the colonization of underdeveloped soils by invasive grasses may facilitate pedogenic processes and thus should be accepted by reclamation managers as a successional milestone in the recovery of ecohydrological functioning of constructed uplands. Poor soil structure under forest floor materials could not support edaphic conditions required by plants to efficiently utilize fertilizer, making this practise futile at the early stage of soil development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.