Vegetated coastal ecosystems can contribute greatly to long-term carbon sequestration and greenhouse gas emission mitigation, providing a strong argument for their protection and restoration. We investigated carbon sequestration in the Cowichan Estuary, a temperate estuary on Vancouver Island, Canada, in relation to habitat type (salt marsh, eelgrass, mudflats, and oyster shell beds) and habitat degradation. Stored organic carbon and inorganic carbon were quantified in the top 20 cm of sediment as well as in eelgrass and salt marsh vegetation. Sedimentation and carbon sequestration rates were quantified by 210Pb radiometric dating, and organic matter sources and quality were assessed by δ13C, C:N ratios and photopigment content. We also examined the potential impact of habitat disturbance by industrial activity (log booms) on the estuary’s carbon storage capacity. The salt marsh was the most important carbon reservoir, with a mean sediment organic carbon stock of 58.78 ± 19.30 Mg C ha-1. Sediment organic carbon stocks in the upper mudflats, lower mudflats, eelgrass meadow, and oyster shell beds were 19.30 ± 3.58, 17.33 ± 3.17, 18.26 ± 0.86 and 9.43 ± 1.50 Mg C ha-1, respectively. Carbon accumulation rates in the salt marsh and eelgrass meadows were 68.21 ± 21 and 38 ± 26 g C m-2 yr-1, whereas 210Pb profiles indicated that mudflat sediments were subject to erosion and/or mixing. While eelgrass was absent from the log boom area, likely due to disturbance, sediments there had similar carbon sequestration and bulk properties to adjacent mudflats. Carbon stocks in the eelgrass meadow were similar to those of the mudflats and consistent with the relatively low values reported for other temperate Zostera marina meadows, compared with tropical eelgrass meadows. Stable isotope evidence was suggestive of substantial outwelling and/or decomposition of eelgrass vegetation. Finally, we compared the carbon sequestration potential of the estuary to selected sources and sinks of CO2 in the surrounding region. We estimated that annual carbon sequestration in the estuary offsets approximately twice the greenhouse gas emission increases attributable to local population growth, and is equivalent to approximately twice that of a 20-year-old stand forest.
Dense congregations of shorebirds forage on tidal flats during long-distance migration, and their abundance is presumed to mirror the underlying ecological conditions. We quantified the nutritional content of intertidal biofilm (a thin layer of microalgae, bacteria, and other micro-organisms embedded in a mucilaginous matrix) to assess whether biofilm biomass and the abundance of macronutrients (lipid, protein, and carbohydrate) provide a measure of habitat quality for migrating shorebirds. We compared shorebird use, biofilm biomass, nutritional quality, and stable isotope signatures at two mudflats on the Fraser River estuary, British Columbia, Canada, during summer 2020 (southward migration) and spring 2021 (northward migration). The abundances of Western Sandpipers (Calidris mauri) and Dunlin (Calidris alpina) were consistently higher (6-100×) at Brunswick Point relative to the Iona Foreshore site during both migration periods. Biofilm biomass (chlorophyll a) was 2× higher at Brunswick Point than Iona Foreshore during southward migration, and was similar between sites during northward migration. Macronutrient content (lipid, protein, and carbohydrate) in intertidal biofilm was 1.4× to 3.8× higher at Brunswick Point than Iona Foreshore during both migration periods. Carbohydrate content was higher during southward migration at both tidal flats, whereas protein and lipid content at Iona Foreshore did not show significant differences between years/migration periods. Carbon and nitrogen stable isotope signatures during spring 2021 did not differ between the two sites, suggesting that nutrients had similar origins from marine and terrestrial inputs. The findings tie shorebird use to nutrients available in intertidal biofilm during migration periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.