The next generation "Stage-4" ground-based cosmic microwave background (CMB) experiment, CMB-S4, consisting of dedicated telescopes equipped with highly sensitive superconducting cameras operating at the South Pole, the high Chilean Atacama plateau, and possibly northern hemisphere sites, will provide a dramatic leap forward in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 will be designed to cross critical thresholds in testing inflation, determining the number and masses of the neutrinos, constraining possible new light relic particles, providing precise constraints on the nature of dark energy, and testing general relativity on large scales.CMB-S4 is intended to be the definitive ground-based CMB project. It will deliver a highly constraining data set with which any model for the origin of the primordial fluctuations-be it inflation or an alternative theory-and their evolution to the structure seen in the Universe today must be consistent. While we have learned a great deal from CMB measurements, including discoveries that have pointed the way to new physics, we have only begun to tap the information encoded in CMB polarization, CMB lensing and other secondary effects. The discovery space from these and other yet to be imagined effects will be maximized by designing CMB-S4 to produce high-fidelity maps, which will also ensure enormous legacy value for CMB-S4. CMB-S4 is the logical successor to the Stage-3 CMB projects which will operate over the next few years. For maximum impact, CMB-S4 should be implemented on a schedule that allows a transition from Stage 3 to Stage 4 that is as seamless and as timely as possible, preserving the expertise in the community and ensuring a continued stream of CMB science results. This timing is also necessary to ensure the optimum synergistic enhancement of the science return from contemporaneous optical surveys (e.g., LSST, DESI, Euclid and WFIRST). Information learned from the ongoing Stage-3 experiments can be easily incorporated into CMB-S4 with little or no impact on its design. In particular, additional information on the properties of Galactic foregrounds would inform the detailed distribution of detectors among frequency bands in CMB-S4. The sensitivity and fidelity of the multiple band foreground measurements needed to realize the goals of CMB-S4 will be provided by CMB-S4 itself, at frequencies just below and above those of the main CMB channels. This timeline is possible because CMB-S4 will use proven existing technology that has been developed and demonstrated by the CMB experimental groups over the last decade. There are, to be sure, considerable technical challenges presented by the required scaling-up of the instrumentation and by the scope and complexity of the data analysis and interpretation. CMB-S4 will require: scaled-up superconducting detector arrays with well-understood and robust material properties and processing techniques; high-throughput mmwave telescopes and optics with unprecedented precisi...
No abstract
Early dark energy (EDE) that behaves like a cosmological constant at early times (redshifts z 3000) and then dilutes away like radiation or faster at later times can solve the Hubble tension. In these models, the sound horizon at decoupling is reduced resulting in a larger value of the Hubble parameter H0 inferred from the cosmic microwave background (CMB). We consider two physical models for this EDE, one involving an oscillating scalar field and another a slowly-rolling field. We perform a detailed calculation of the evolution of perturbations in these models. A Markov Chain Monte Carlo search of the parameter space for the EDE parameters, in conjunction with the standard cosmological parameters, identifies regions in which H0 inferred from Planck CMB data agrees with the SH0ES local measurement. In these cosmologies, current baryon acoustic oscillation and supernova data are described as successfully as in ΛCDM, while the fit to Planck data is slightly improved. Future CMB and large-scale-structure surveys will further probe this scenario.
Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as M h ∝ M 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 10 10 M ⊙ and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, M h /M * , varies from low to high masses, reaching a minimum of M h /M * ∼ 27 at M * = 4.5 × 10 10 M ⊙ and M h = 1.2 × 10 12 M ⊙ . This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass", M piv * , the "pivot halo mass", M piv h , and the "pivot ratio", (M h /M * ) piv . Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv * . The pivot stellar mass decreases from M piv * = 5.75±0.13×10 10 M ⊙ at z = 0.88 to M piv * = 3.55±0.17×10 10 M ⊙ at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (M h /M * ) piv ∼ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on M h /M * and not simply M h , as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and AGN feedback.
We present a detailed investigation of a sub-dominant oscillating scalar field ('early dark energy', EDE) in the context of resolving the Hubble tension. Consistent with earlier work, but without relying on fluid approximations, we find that a scalar field frozen due to Hubble friction until log 10 (zc) ∼ 3.5, reaching ρEDE(zc)/ρtot ∼ 10%, and diluting faster than matter afterwards can bring cosmic microwave background (CMB), baryonic acoustic oscillations, supernovae luminosity distances, and the late-time estimate of the Hubble constant from the SH0ES collaboration into agreement. A scalar field potential which scales as V (φ) ∝ φ 2n with 2 n 3.4 around the minimum is preferred at the 68% confidence level, and the Planck polarization places additional constraints on the dynamics of perturbations in the scalar field. In particular, the data prefers a potential which flattens at large field displacements. An MCMC analysis of mock data shows that the next-generation CMB observations (i.e., CMB-S4) can unambiguously detect the presence of the EDE at very high significance. This projected sensitivity to the EDE dynamics is mainly driven by improved measurements of the E-mode polarization.We also explore new observational signatures of EDE scalar field dynamics: (i) We find that depending on the strength of the tensor-to-scalar ratio, the presence of the EDE might imply the existence of isocurvature perturbations in the CMB. (ii) We show that a strikingly rapid, scaledependent growth of EDE field perturbations can result from parametric resonance driven by the anharmonic oscillating field for n ≈ 2. This instability and ensuing potentially nonlinear, spatially inhomogenoues, dynamics may provide unique signatures of this scenario. CONTENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.