Let [Formula: see text] with [Formula: see text]. Let [Formula: see text] and [Formula: see text] denote, respectively, the symmetric group and alternating group on [Formula: see text] letters. Let [Formula: see text] be an indeterminate, and define [Formula: see text] where [Formula: see text] are certain prescribed forms in [Formula: see text]. For a certain set of these forms, we show unconditionally that there exist infinitely many primes [Formula: see text] such that [Formula: see text] is irreducible over [Formula: see text], [Formula: see text], and the fields [Formula: see text] are distinct and monogenic, where [Formula: see text]. Using a different set of forms, we establish a similar result for all square-free values of [Formula: see text], with [Formula: see text], and any positive integer value of [Formula: see text] for which [Formula: see text] is square-free. Additionally, in this case, we prove that [Formula: see text]. Finally, we show that these results can be extended under the assumption of the [Formula: see text]-conjecture. Our methods make use of recent results of Helfgott and Pasten.
For any integer m 0, we prove that f (x) = x 9 + 9mx 6 + 192m 3 is irreducible over Q and that the Galois group of f (x) over Q is the dihedral group of order 18. Moreover, we show that for infinitely many values of m, the splitting fields for f (x) are distinct.2010 Mathematics subject classification: primary 12F10; secondary 11R09, 11R32, 12F12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.