Nucleophilic aromatic substitution (SNAr) reactions are exploited to prepare poly(arylene sulfide)s (PAS's) via the reaction of bis-thiolates and dibrominated pyromellitic diimide (PMDI) derivatives. Small-molecule model studies reveal the reaction is well-defined and proceeds in quantitative yield in practical times at room temperature. Variation in comonomer feed ratios allowed some control over target polymer molecular weights in the step polymerization, but control was likely limited by the relatively poor polymer solubility in the dipolar aprotic solvents typically employed to promote SNAr reactions. One substitution pattern produces a steric "pocket" around the PMDI units, inducing a peculiar solubility trend in halogenated solvents; that is, greatly reduced solubility in CHCl 3 relative to CH 2 Cl 2 and C 2 H 2 Cl 4 . One example small-molecule readily dissolves in CHCl 3 at room temperature, then rapidly grows poorly soluble crystals revealed by single-crystal XRD to contain CHCl 3 molecules in the steric pockets. Finally, the recently demonstrated depolymerization of phthalonitrile-based PAS's via ipso substitution with monothiolates as chain scission agents yields quantitative molecular weight reduction to monomeric species from the polymers reported here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.