The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.
For deformable registration of computed tomography (CT) scans in image guided radiation therapy (IGRT) we apply Riemannian elasticity regularization. We explore the use of spatially varying elasticity parameters to encourage bone rigidity and local tissue volume change only in the gross tumor volume (GTV) and the lungs. We evaluate the method on the point-validated 4DCT breathing thorax POPI-model and demonstrate its use and properties in registration of pre-and post-chemo CT scans for contour propagation in a Hodgkin lymphoma (HL) case showing significant tumor shrinkage. For the POPI-model we achieved a total mean target registration error (TRE) of 0.92 ± 0.49 mm. Using spatially varying regularization for the HL case, deformation was limited to the GTV and lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.