Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurface composition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18C Danish neoclassical painter of historical and mythological subjects. For the first time, a real hidden portrait on an easel painting has been imaged by THz-TDI, with an unexpected richness of detail. THz C- and B-scans have been compared with images obtained by x-ray radiography and invasive cross-sectional imaging, leading to a deeper understanding of the strengths and limitations of this technique for art diagnostic purposes and defining its role among complementary tools for the investigation of art objects. We present a fast and effective method to separate single THz pulse reflections of interest from the entire signal across the image, adapted for uneven surfaces typically encountered in practical applications of the technique. Interfaces between layers of the painting have been successfully imaged, contributing substantially to the understanding of the structure of the painting.
The application of mass spectrometry–based proteomics to artworks provides accurate and detailed characterization of protein-based materials used in their production. This is highly valuable to plan conservation strategies and reconstruct the artwork’s history. In this work, the proteomic analysis of canvas paintings from the Danish Golden Age led to the confident identification of cereal and yeast proteins in the ground layer. This proteomic profile points to a (by-)product of beer brewing, in agreement with local artists’ manuals. The use of this unconventional binder can be connected to the workshops within the Royal Danish Academy of Fine Arts. The mass spectrometric dataset generated from proteomics was also processed with a metabolomics workflow. The spectral matches observed supported the proteomic conclusions, and, in at least one sample, suggested the use of drying oils. These results highlight the value of untargeted proteomics in heritage science, correlating unconventional artistic materials with local culture and practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.