Summary Background A rapidly increasing proportion of people in high-income countries are surviving into their tenth decade. Concern is widespread that the basis for this development is the survival of frail and disabled elderly people into very old age. To investigate this issue, we compared the cognitive and physical functioning of two cohorts of Danish nonagenarians, born 10 years apart. Methods People in the first cohort were born in 1905 and assessed at age 93 years (n=2262); those in the second cohort were born in 1915 and assessed at age 95 years (n=1584). All cohort members were eligible irrespective of type of residence. Both cohorts were assessed by surveys that used the same design and assessment instrument, and had almost identical response rates (63%). Cognitive functioning was assessed by mini-mental state examination and a composite of five cognitive tests that are sensitive to age-related changes. Physical functioning was assessed by an activities of daily living score and by physical performance tests (grip strength, chair stand, and gait speed). Findings The chance of surviving from birth to age 93 years was 28% higher in the 1915 cohort than in the 1905 cohort (6·50% vs 5·06%), and the chance of reaching 95 years was 32% higher in 1915 cohort (3·93% vs 2·98%). The 1915 cohort scored significantly better on the mini-mental state examination than did the 1905 cohort (22·8 [SD 5·6] vs 21·4 [6·0]; p<0·0001), with a substantially higher proportion of participants obtaining maximum scores (28–30 points; 277 [23%] vs 235 [13%]; p<0·0001). Similarly, the cognitive composite score was significantly better in the 1915 than in the 1905 cohort (0·49 [SD 3·6] vs 0·01 [SD 3·6]; p=0·0003). The cohorts did not differ consistently in the physical performance tests, but the 1915 cohort had significantly better activities of daily living scores than did the 1905 cohort (2·0 [SD 0·8] vs 1·8 [0·7]; p<0·0001). Interpretation Despite being 2 years older at assessment, the 1915 cohort scored significantly better than the 1905 cohort on both the cognitive tests and the activities of daily living score, which suggests that more people are living to older ages with better overall functioning. Funding Danish National Research Foundation; US National Institutes of Health—National Institute on Aging; Danish Agency for Science, Technology and Innovation; VELUX Foundation.
Short leukocyte telomere length (LTL) is associated with atherosclerosis in adults and diminished survival in the elderly. LTL dynamics are defined by LTL at birth, which is highly variable, and its age-dependent attrition thereafter, which is rapid during the first 20 years of life. We examined whether age-dependent LTL attrition during adulthood can substantially affect individuals’ LTL ranking (e.g., longer or shorter LTL) in relation to their peers. We measured LTL in samples donated 12 years apart on average by 1156 participants in four longitudinal studies. We observed correlations of 0.91–0.96 between baseline and follow-up LTLs. Ranking individuals by deciles revealed that 94.1% (95% confidence interval of 92.6–95.4%) showed no rank change or a 1 decile change over time. We conclude that in adults, LTL is virtually anchored to a given rank with the passage of time. Accordingly, the links of LTL with atherosclerosis and longevity appear to be established early in life. It is unlikely that lifestyle and its modification during adulthood exert a major impact on LTL ranking.
Recent longitudinal studies of age-dependent leukocyte telomere length (LTL) attrition have reported that variable proportions of individuals experience LTL lengthening. Often, LTL lengthening has been taken at face value, and authors have speculated about the biological causation of this finding. Based on empirical data and theoretical considerations, we show that regardless of the method used to measure telomere length (Southern blot or quantitative polymerase chain reaction-based methods), measurement error of telomere length and duration of follow-up explain almost entirely the absence of age-dependent LTL attrition in longitudinal studies. We find that LTL lengthening is far less frequent in studies with long follow-up periods and those that used a high-precision Southern blot method (as compared with quantitative polymerase chain reaction determination, which is associated with larger laboratory error). We conclude that the LTL lengthening observed in longitudinal studies is predominantly, if not entirely, an artifact of measurement error, which is exacerbated by short follow-up periods. We offer specific suggestions for design of longitudinal studies of LTL attrition to diminish this artifact.
BackgroundLeucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL variation among adults. A number of studies have estimated the heritability of LTL, but none has assessed the heritability of age-dependent LTL attrition.MethodsWe examined the heritability of LTL dynamics based on a longitudinal evaluation (an average follow-up of 12 years) in 355 monozygotic and 297 dizygotic same-sex twins (aged 19–64 years at baseline).ResultsHeritability of LTL at baseline was estimated at 64% (95% CI 39% to 83%) with 22% (95% CI 6% to 49%) of shared environmental effects. Heritability of age-dependent LTL attrition rate was estimated at 28% (95% CI 16% to 44%). Individually unique environmental factors, estimated at 72% (95% CI 56% to 84%) affected LTL attrition rate with no indication of shared environmental effects.ConclusionsThis is the first study that estimated heritability of LTL and also its age-dependent attrition. As LTL attrition is much slower in adults than in children and given that having a long or a short LTL is largely determined before adulthood, our findings suggest that heritability and early life environment are the main determinants of LTL throughout the human life course. Thus, insights into factors that influence LTL at birth and its dynamics during childhood are crucial for understanding the role of telomere genetics in human ageing and longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.