This paper presents an application of the Radial Basis Function – Based Finite Difference Time Domain Method (RBF-FDTD) such as MQ (Multiquadrics), IMQ (Inverse Multiquadrics) and GA (Gaussian) is developed in [1] for modeling the lightning-induced voltages on overhead power lines in both cases of ideal ground and lossy ground. In addition, the influence of corona on the lightning-induced voltages has been considered as well. In order to increasing the accuracy of proposed method, the optimal algorithm of finding the shape parameter has been used. The accuracy, effectiveness and applicability of The MQ, IMQ and GA RBF-FDTD are evaluated through computing the lightning-induced voltages on 110kV overhead distribution lines. The solutions obtained by the RBF-FDTD are compared with those of the traditional FDTD based on the basic solution of the LIOV. The obtained results demonstrate that the RBF-FDTD is always more accurate than the traditional FDTD, in particular with the optimal shape parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.