Algorithms based on trust regions have been shown to be robust methods for unconstrained optimization problems. All existing methods, either based on the dogleg strategy or Hebden-Mor6 iterations, require solution of system of linear equations. In large scale optimization this may be prohibitively expensive. It is shown in this paper that an approximate solution of the trust region problem may be found by the preconditioned conjugate gradient method. This may be regarded as a generalized dogleg technique where we asymptotically take the inexact quasi-Newton step. We also show that we have the same convergence properties as existing methods based on the dogleg strategy using an approximate Hessian.
We present a new method for large-scale nonnegative regularization, based on a quadratically and nonnegatively constrained quadratic problem. Such problems arise for example in the regularization of ill-posed problems in image restoration where, in addition, some of the matrices involved are very ill-conditioned. The method is an interior-point iteration that requires the solution of a large-scale and possibly ill-conditioned parameterized trust-region subproblems at each step. The method uses recently developed techniques for the large-scale trust-region subproblem. We describe the method and present preliminary numerical results on test problems and image restoration problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.