Background: Human clinical studies reported that several electroencephalographical (EEG) parameters can be used as biomarkers of psychiatric disorders. EEGs recorded from non-human primates (monkeys) is useful for understanding of human pathologies of psychiatric disorders and development of new therapeutic agents. New methods: In this study, we expand a previous non-invasive head holding system with face masks for awake monkeys to be applied to scalp EEG recording. The new design of a head holding system allows to attach scalp EEG electrodes on the positions comparable to human electrode placement and to present auditory stimuli. Results: With this system, we could record auditory evoked potentials (AEPs) in auditory sensory gating and oddball paradigms, which are often used as biomarkers of psychiatric disorders in animal models and human patients. The recorded AEPs were comparable to previous human clinical data. Comparison with existing methods: Compared with previous non-invasive head holding systems, top, side (cheek and ears), and rear of the head can be open for attachment of EEG electrodes and auditory stimulation in the present system. Conclusions: The results suggest that the present system is useful in EEG recording from awake monkeys. Furthermore, this system can be applied to eye-tracking and chronic intra-cerebral recording experiments.
Background Auditory steady-state responses (ASSRs) are periodic evoked responses to constant periodic auditory stimuli, such as click trains, and are suggested to be associated with higher cognitive functions in humans. Since ASSRs are disturbed in human psychiatric disorders, recording ASSRs from awake intact macaques would be beneficial to translational research as well as an understanding of human brain function and its pathology. However, ASSR has not been reported in awake macaques. Results Electroencephalograms (EEGs) were recorded from awake intact macaques, while click trains at 20–83.3 Hz were binaurally presented. EEGs were quantified based on event-related spectral perturbation (ERSP) and inter-trial coherence (ITC), and ASSRs were significantly demonstrated in terms of ERSP and ITC in awake intact macaques. A comparison of ASSRs among different click train frequencies indicated that ASSRs were maximal at 83.3 Hz. Furthermore, analyses of laterality indices of ASSRs showed that no laterality dominance of ASSRs was observed. Conclusions The present results demonstrated ASSRs, comparable to those in humans, in awake intact macaques. However, there were some differences in ASSRs between macaques and humans: macaques showed maximal ASSR responses to click frequencies higher than 40 Hz that has been reported to elicit maximal responses in humans, and showed no dominant laterality of ASSRs under the electrode montage in this study compared with humans with right hemisphere dominance. The future ASSR studies using awake intact macaques should be aware of these differences, and possible factors, to which these differences were ascribed, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.