Superdispersive iron, cobalt and copper nanocrystalline powders were synthesized in a water-ethanol medium by the reduction method using sodium borohydride as a reducing agent and carboxymethyl cellulose as a stabilizer (for Fe and Co nanoparticles). Transmission electron microscopy micrographs and x-ray diffraction analyses of the freshly prepared nanocrystalline powders indicated that they were in a zerovalent state with particle sizes ranging from 20 to 60 nm. The soybean seeds were treated with an extra low nanocrystalline dose (not more than 300 mg of each metal per hectare) and then sowed on an experimental landfill plot consisting of a farming area of 180 m 2 . This pre-sowing treatment of soybean seeds, which does not exert any adverse effect on the soil environment, reliably changed the biological indices of the plant growth and development. In particular, in laboratory experiments, the germination rates of soybean seeds treated with zerovalent Cu, Co and Fe were 65, 80 and 80%, respectively, whereas 55% germination was observed in the control sample; in the field experiment, for all of the nanoscale metals studied, the chlorophyll index increased by 7-15% and the number of nodules by 20-49% compared to the control sample, and the soybean crop yield increased up to 16% in comparison with the control sample.
Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l −1 . The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p<0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l −1 . The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l −1 ). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.
X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed that TiO 2 particles synthesized by a sol-gel procedure exhibited uniform size about 16-20 nm. This nanopowder was deposited on a porous quartz tube (D = 74 mm, L = 418 mm, deposit density ∼16.4 mg cm −2 ) through an intermediate adhesive polymethylmethacrylate layer to manufacture a photocatalytic filter tube. A polypropylene pre-filter was coated with a nanosilver layer (particle size ∼20 nm) prepared by aqueous molecular solution method. An air cleaner of 250 m 3 h −1 capacity equipped with this pre-filter, an electrostatic air filter, 4 photocatalytic filter tubes and 4 UV-A lamps (36 W) presented the high degradation ability for certain volatile organic compounds (VOCs), bacteria and fungi. The VOCs degradation performances of the equipment with respect to divers compounds are different: in a 10 m 3 box, 91.6% of butanol was removed within 55 min, 80% of acetone within 100 min, 70.1% of diethyl ether within 120 min and only 43% of benzene was oxidized within 150 min. Over 99% of bacteria and fungi were killed after the air passage through the equipment. For application, it was placed in the intensive care room (volume of 125 m 3 ) of E hospital in Hanoi; 69% of bacteria and 63% of fungi were killed within 6 h.
The damaging effects of nanoparticles were hypothesized to be the oxidative stress caused by the formation of reactive oxygen species and initiation of inflammatory reactions. In this context a study on the effects of nanosilver particles on the formation of reactive oxygen species in human lymphocyte culture was carried out. The obtained results showed that fluorescence intensity considerably increased after cells had interacted with nanosilver particles of varying concentrations, indicating the formation of reactive oxygen species and their accumulation in lymphocyte cells. Morphological study of the lymphocyte cells under the effects of nanosilver particles showed that the change in morphology depends on the concentration and size of nanosilver particles: for a size ≤20 nm the lymphocyte cell significantly shrank with pronounced differences in the morphological structure of the cell membrane, but for a size ≥200 nm no change was observed.
Soybean crop losses due to fungal diseases are considerable and directly depend on the severity of the disease. The objective of this study was to assess antifungal activity of silver/silica (Ag/SiO2) nanocomposite against crop pathogenic fungi (Fusarium oxysporium and Rhizoctonia solani) in soybean farming. Firstly, silica particles with a size ranging from 20 to 30 nm were modified with 3-aminopropyl triethoxysilane (APTES) for 2 h. Then these amino acid - functionalized silica particles were exposed to silver ion solution followed by reduction of silver ions with sodium borohydride to form Ag/SiO2 nanocomposite. The formation of the linkage between APTES and silica particles was confirmed by Fourier transform infrared (FTIR) spectroscopy. The surface plasmon absorption maximum at 400 nm confirmed the nano essence of the silver particles on silica particles. For the seed coating, bentonite from Lam Dong deposit, Vietnam, was used as an encapsulation substance, while carboxymethyl cellulose (CMC) was used as a binding agent. The assessment of fungicidal activity of the Ag/SiO2 nanocomposite produced showed that this product is effective in inhibition of the pathogenic fungi in soybean plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.