Defect engineering is a well‐established approach to customize the functionalities of perovskite oxides. In demanding high‐power applications of piezoelectric materials, acceptor doping serves as the state‐of‐the‐art hardening approach, but inevitably deteriorates the electromechanical properties. Here, a new hardening effect associated with isolated oxygen vacancies for achieving well‐balanced performances is proposed. Guided by theoretical design, a well‐balanced performance of mechanical quality factor (Qm) and piezoelectric coefficient (d33) is achieved in lead‐free potassium sodium niobate ceramics, where Qm increases by over 60% while d33 remains almost unchanged. By atomic‐scale Z‐contrast imaging, hysteresis measurement, and quantitative piezoresponse force microscopy analysis, it is revealed that the improved Qm results from the inhibition of both extrinsic and intrinsic losses while the unchanged d33 is associated with the polarization contributions being retained. More encouragingly, the hardening effect shows exceptional stability with increasing vibration velocity, offering potential in material design for practical high‐power applications such as pharmaceutical extraction and ultrasonic osteotomes.
Aims: Early detection of colorectal cancer (CRC) provides substantially better survival rates. This study aimed to develop a blood-based screening assay named SPOT-MAS (‘screen for the presence of tumor by DNA methylation and size’) for early CRC detection with high accuracy. Methods: Plasma cell-free DNA samples from 159 patients with nonmetastatic CRC and 158 healthy controls were simultaneously analyzed for fragment length and methylation profiles. We then employed a deep neural network with fragment length and methylation signatures to build a classification model. Results: The model achieved an area under the curve of 0.989 and a sensitivity of 96.8% at 97% specificity in detecting CRC. External validation of our model showed comparable performance, with an area under the curve of 0.96. Conclusion: SPOT-MAS based on integration of cancer-specific methylation and fragmentomic signatures could provide high accuracy for early-stage CRC detection.
Silica nanoparticles (SiO2 NPs) synthesized by the Stober method were used as drug delivery vehicles. Doxorubicin hydrochloride (DOX·HCl) is a chemo-drug absorbed onto the SiO2 NPs surfaces. The DOX·HCl loading onto and release from the SiO2 NPs was monitored via UV-VIS and fluorescence spectra. Alternatively, the zeta potential was also used to monitor and evaluate the DOX·HCl loading process. The results showed that nearly 98% of DOX·HCl was effectively loaded onto the SiO2 NPs’ surfaces by electrostatic interaction. The pH-dependence of the process wherein DOX·HCl release out of DOX·HCl-SiO2 NPs was investigated as well. For comparison, both the free DOX·HCl molecules and DOX·HCl-SiO2 NPs were used as the labels for cultured cancer cells. Confocal laser scanning microscopy images showed that the DOX·HCl-SiO2 NPs were better delivered to cancer cells which are more acidic than healthy cells. We propose that engineered DOX·HCl-SiO2 systems are good candidates for drug delivery and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.