Kisspeptin and its cognate receptor, GPR54, are critical for reproductive development and for the regulation of gonadotropin-releasing hormone (GnRH) secretion. Although kisspeptin has been found to depolarize GnRH neurons, the underlying ionic mechanism has not been elucidated. Presently, we found that kisspeptin depolarized GnRH neurons in a concentration-dependent manner with a maximum depolarization of 22.6 Ϯ 0.6 mV and EC 50 of 2.8 Ϯ 0.2 nM. Under voltage-clamp conditions, kisspeptin induced an inward current of 18.2 Ϯ 1.6 pA (V hold ϭ Ϫ60 mV) that reversed near Ϫ115 mV in GnRH neurons. The more negative reversal potential than E K ϩ (Ϫ90 mV) was caused by the concurrent inhibition of barium-sensitive, inwardly rectifying (Kir) potassium channels and activation of sodiumdependent, nonselective cationic channels (NSCCs). Indeed, reducing extracellular Na ϩ (to 5 mM) essentially eliminated the kisspeptininduced inward current. The current-voltage relationships of the kisspeptin-activated NSCC currents exhibited double rectification with negative slope conductance below Ϫ40 mV in the majority of the cells. Pharmacological examination showed that the kisspeptin-induced inward currents were blocked by TRPC (canonical transient receptor potential) channel blockers 2-APB (2-aminoethyl diphenylborinate), flufenamic acid, SKF96365 (1-[-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), and Cd 2ϩ, but not by lanthanum (100 M). Furthermore, single-cell reverse transcription-PCR analysis revealed that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 subunits were expressed in GnRH neurons. Therefore, it appears that kisspeptin depolarizes GnRH neurons through activating TRPC-like channels and, to a lesser extent, inhibition of Kir channels. These actions of kisspeptin contribute to the pronounced excitation of GnRH neurons that is critical for mammalian reproduction.
Multiple K+ conductances are targets for many peripheral and central signals involved in the control of energy homeostasis. Potential K+ channel targets are the KCNQ subunits that form the channels underlying the M-current, a sub-threshold, non-inactivating K+ current that is a common target for G-protein coupled receptors. Whole-cell recordings were made from GFP (Renilla)-tagged NPY neurons from the arcuate nucleus of the hypothalamus using protocols to isolate and characterize the M-current in these orexigenic neurons. We recorded robust K+ currents in the voltage range of the M-current, which were inhibited by the selective KCNQ channel blocker XE991 (40 µM), in both intact males and ovariectomized, 17β-estradiol (E2)-treated females. Since NPY neurons are orexigenic and are active during fasting, the M-current was measured in fed and fasted male mice. Fasting attenuated the XE991-sensitive current by 3-fold which correlated with decreased expression of the KCNQ2 and KCNQ3 subunits as measured with quantitative real-time PCR. Furthermore, E2 treatment augmented the XE991-sensitive M-current by 3-fold in ovariectomized (vs. oil-treated) female mice. E2-treatment increased the expression of the KCNQ5 subunit in females but not KCNQ2 or KCNQ3 subunits. Fasting in females abrogated the effects of E2 on M-current activity, at least in part, by decreasing KCNQ2 and KCNQ3 expression. In summary, these data suggest that the M-current plays a pivotal role in the modulation of NPY neuronal excitability and may be an important cellular target for neurotransmitter and hormonal signals in the control of energy homeostasis in both males and females.
Reproduction and fertility are regulated via hormones of the hypothalamic-pituitary-gonadal (HPG) axis. Control of this reproductive axis occurs at all levels, including the brain and pituitary, and allows for the promotion or inhibition of gonadal sex steroid secretion and function. In addition to guiding proper gonadal development and function, gonadal sex steroids also act in negative- and positive-feedback loops to regulate reproductive circuitry in the brain, including kisspeptin neurones, thereby modulating overall HPG axis status. Additional regulation is also provided by sex steroids made within the brain, including neuroprogestins. Furthermore, because reproduction and survival need to be coordinated and balanced, the HPG axis is able to modulate (and be modulated by) stress hormone signalling, including cortiscosterone, from the hypothalamic-pituitary-adrenal (HPA) axis. This review covers recent data related to the neural, hormonal and stress regulation of the HPG axis and emerging interactions between the HPG and HPA axes, focusing on actions at the level of the brain and pituitary.
During the reproductive cycle, fluctuations in circulating estrogens affect multiple homeostatic systems controlled by hypothalamic neurons. Two of these neuronal populations are arcuate proopiomelanocortin and neuropeptide Y neurons, which control energy homeostasis and feeding. Estradiol modulates these neurons either through the classical estrogen receptors (ERs) to control gene transcription or through a G protein-coupled receptor (mER) activating multiple signaling pathways. To differentiate between these two divergent ER-mediated mechanisms and their effects on homeostasis, female guinea pigs were ovariectomized and treated systemically with vehicle, estradiol benzoate (EB) or STX, a selective mER agonist, for 4 wk, starting 7 d after ovariectomy. Individual body weights were measured after each injection day for 28 d, at which time the animals were euthanized, and the arcuate nucleus was microdissected. As predicted, the body weight gain was significantly lower for EB-treated females after d 5 and for STX-treated females after d 12 compared with vehicle-treated females. Total arcuate RNA was extracted from all groups, but only the vehicle and STX-treated samples were prepared for gene microarray analysis using a custom guinea pig gene microarray. In the arcuate nucleus, 241 identified genes were significantly regulated by STX, several of which were confirmed by quantitative real-time PCR and compared with EB-treated groups. The lower weight gain of EB-treated and STX-treated females suggests that estradiol controls energy homeostasis through both ERalpha and mER-mediated mechanisms. Genes regulated by STX indicate that not only does it control neuronal excitability but also alters gene transcription via signal transduction cascades initiated from mER activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.