In low-income, urban, informal communities lacking sewerage and solid waste services, onsite sanitation (sludges, aqueous effluent) and child feces are potential sources of human fecal contamination in living environments. Working in informal communities of urban Maputo, Mozambique, we developed a quantitative, stochastic, mass-balance approach to evaluate plausible scenarios of localized contamination that could explain why the soil-transmitted helminth Ascaris remains endemic despite nearly universal coverage of latrines that sequester most fecal wastes. We used microscopy to enumerate presumptively viable Ascaris ova in feces, fecal sludges, and soils from compounds (i.e., household clusters) and then constructed a steady-state mass-balance model to evaluate possible contamination scenarios capable of explaining observed ova counts in soils. Observed Ascaris counts (mean = −0.01 log 10 ova per wet gram of soil, sd = 0.71 log 10 ) could be explained by deposits of 1.9 grams per day (10th percentile 0.04 grams, 90th percentile 84 grams) of child feces on average, rare fecal sludge contamination events that transport 17 kg every three years (10th percentile 1.0 kg, 90th percentile 260 kg), or a daily discharge of 2.7 kg aqueous effluent from an onsite system (10th percentile 0.09 kg, 90th percentile 82 kg). Results suggest that even limited intermittent flows of fecal wastes in this setting can result in a steady-state density of Ascaris ova in soils capable of sustaining transmission, given the high prevalence of Ascaris shedding by children (prevalence = 25%; mean = 3.7 log 10 per wet gram, sd = 1.1 log 10 ), the high Ascaris ova counts in fecal sludges (prevalence = 88%; mean = 1.8 log 10 per wet gram, sd = 0.95 log 10 ), and the extended persistence and viability of Ascaris ova in soils. Even near-universal coverage of onsite sanitation may allow for sustained transmission of Ascaris under these conditions.
Uncontained fecal wastes in cities may present exposure risks to the public. We collected discarded feces from public spaces in San Francisco for analysis by RT-qPCR for a range of enteric pathogens. Out of 59 samples, we found 12 (20%) were of human origin and 47 (80%) were non-human; 30 of 59 stools were positive for ≥1 of the 35 pathogens assessed, including pathogenicE. coli,Shigella, norovirus,Cryptosporidium, andTrichuris. Using quantitative enteric pathogen estimates and data on observed fecal waste from a public reporting system, we modeled pathogens removed from the environment attributable to a recently implemented program of public toilet construction. We estimated that each new public toilet reduced the annual number of enteric pathogens released into the immediate environment (within 500 m walking distance), including 6.3 x 1012enteropathogenicE. coli(95% CI: 4.0 x 1012- 7.9 x 1012), 3.2 x 1011enteroaggregativeE. coli(95% CI: 1.3 x 1011- 6.3 x 1011), and 3.2 x 108Shigella(6.3 x 107- 2.5 x 109). Improving access to public sanitation can reduce enteric pathogen hazards in cities. Interventions must also consider the hygienic disposal of animal waste to reduce microbial hazards with zoonotic infection potential.
The role of canines in transmitting antibiotic resistant bacteria to humans in the urban environment is poorly understood. To elucidate this role, we utilized genomic sequencing and phylogenetics to characterize the burden and transmission dynamics of antibiotic resistantEscherichia coli(ABR-Ec) cultured from canine and human feces present on urban sidewalks in San Francisco, California. We collected a total of fifty-nine ABR-Ec from human (n=12) and canine (n=47) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antibiotic resistance (ABR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and canines from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Overall, we found human and canine samples to carry similar amounts and profiles of ABR genes. Our results provide evidence for multiple transmission events of ABR-Ec between humans and canines. In particular, we found one instance of likely transmission from canines to humans as well as an additional local outbreak cluster consisting of one canine and one human sample. Based on this analysis, it appears that canine feces act as an important reservoir of clinically relevant ABR-Ec within the urban environment. Our findings support that public health measures should continue to emphasize proper canine feces disposal practices, access to public toilets and sidewalk and street cleaning.
Uncontained fecal wastes in cities may present exposure risks to the public. We collected discarded feces from public spaces in San Francisco, CA for analysis by RT-qPCR for a range of enteric pathogens. Out of 59 samples, we found 12 (20%) were of human origin and 47 (80%) were non-human; 30 of 59 stools were positive for ≥1 of the 35 pathogens assessed, including pathogenic E. coli, Shigella, norovirus, Cryptosporidium, and Trichuris. Using quantitative enteric pathogen estimates and data on observed fecal waste from a public reporting system, we modeled pathogens removed from the environment attributable to a recently implemented program of public toilet construction. We estimated that each new public toilet reduced the annual number of enteric pathogens released into the immediate environment (within 500 m walking distance), including 6.3 x 1012 enteropathogenic E. coli (95% CI: 4.0 x 1012–7.9 x 1012), 3.2 x 1011 enteroaggregative E. coli (95% CI: 1.3 x 1011–6.3 x 1011), and 3.2 x 108 Shigella (6.3 x 107–2.5 x 109). Improving access to public sanitation can reduce enteric pathogen hazards in cities. Interventions must also consider the hygienic disposal of animal waste to reduce microbial hazards with zoonotic infection potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.