BackgroundChildren and families living with rare disease often experience significant health, psychosocial, economic burdens and diagnostic delays. Experiences appear to be constant, regardless of the specific rare disease diagnosis. Systematically collected Australian data to support policy response on rare diseases are scarce. We address this gap by providing survey results about 462 children aged <19 years living with approximately 200 different rare diseases.ResultsOf 462 children, 96% were born in Australia, 55% were male, median age was 8.9 years (0–18.2). Four-hundred-and-twenty-eight (93%) had received a definitive diagnosis but 29 (7%) remained undiagnosed. Before receiving the correct diagnosis 38% consulted ≥ 6 different doctors. Among those with a diagnosis, 37% believed the diagnosis was delayed and 27% initially received a wrong diagnosis. Consequences of delayed diagnosis include anxiety, loss of reproductive confidence because of an ill-defined genetic risk, frustration and stress (54%), disease progression (37%), delays in treatment (25%) and inappropriate treatments (10%). Perceived reasons for diagnostic delays included lack of knowledge about the disease among health professionals (69.2%), lack of symptom awareness by the family (21.2%) and difficulties accessing tests (17.9%). Children with inborn errors of metabolism were less likely to have a delayed diagnosis compared with other disease groups (Chi-Sq = 17.1; P < 0.0001), most likely due to well-established and accessible biochemical screening processes. Diagnosis was given in person in 74% of cases, telephone in 18.5% and via a letter in 3.5%. Some families (16%) were dissatisfied with the way the diagnosis was delivered, citing lack of empathy and lack of information from health professionals. Psychological support at diagnosis was provided to 47.5%, but 86.2% believed that it should always be provided. Although 74.9% of parents believed that the diagnosis could have an impact on future family planning, only 44.8% received genetic counselling.ConclusionParents of children living with rare chronic and complex diseases have called for better education, resourcing of health professionals to prevent avoidable diagnostic delays, and to facilitate access to early interventions and treatments. Access to psychological support and genetic counselling should be available to all parents receiving a life-changing diagnosis for their child.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-017-0622-4) contains supplementary material, which is available to authorized users.
Background: Ketone bodies form a vital energy source for end organs in a variety of physiological circumstances. At different times, the heart, brain and skeletal muscle in particular can use ketones as a primary substrate. Failure to generate ketones in such circumstances leads to compromised energy delivery, critical end-organ dysfunction and potentially death. There are a range of inborn errors of metabolism (IEM) affecting ketone body production that can present in this way, including disorders of carnitine transport into the mitochondrion, mitochondrial fatty acid oxidation deficiencies (MFAOD) and ketone body synthesis. In situations of acute energy deficit, management of IEM typically entails circumventing the enzyme deficiency with replenishment of energy requirements. Due to profound multi-organ failure it is often difficult to provide optimal enteral therapy in such situations and rescue with sodium DL-3-hydroxybutyrate (S DL-3-OHB) has been attempted in these conditions as documented in this paper. Results: We present 3 cases of metabolic decompensation, one with carnitine-acyl-carnitine translocase deficiency (CACTD) another with 3-hydroxyl, 3-methyl, glutaryl CoA lyase deficiency (HMGCLD) and a third with carnitine palmitoyl transferase II deficiency (CPT2D). All of these disorders are frequently associated with death in circumstance where catastrophic acute metabolic deterioration occurs. Intensive therapy with adjunctive S DL-3OHB led to rapid and sustained recovery in all. Alternative therapies are scarce in these situations. Conclusion: S DL-3-OHB has been utilised in multiple acyl co A dehydrogenase deficiency (MADD) in cases with acute neurological and cardiac compromise with long-term data awaiting publication. The use of S DL-3-OHB is novel in non-MADD fat oxidation disorders and contribute to the argument for more widespread use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.