Plants disease resistance (R) genes encode specialized receptors that are quantitative, rate-limiting defense regulators. R genes must be expressed at optimum levels to function properly. If expression is too low, downstream defense responses are not activated efficiently. Conversely, overexpression of R genes can trigger autoactivation of defenses with deleterious consequences for the plant. Little is known about R gene regulation, particularly under defense-inducing conditions. We examined regulation of the Arabidopsis thaliana gene RPP8 (resistance to Hyaloperonospora arabidopsidis, isolate Emco5). RPP8 was induced in response to challenge with H. arabidopsidis or application of salicylic acid, as shown with RPP8-Luciferase transgenic plants and quantitative reverse-transcription polymerase chain reaction of endogenous alleles. The RPP1 and RPP4 genes were also induced by H. arabidopsidis and salicylic acid, suggesting that some RPP genes are subject to feedback amplification. The RPP8 promoter contains three W box cis elements. Site-directed mutagenesis of all three W boxes greatly diminished RPP8 basal expression, inducibility, and resistance in transgenic plants. Motif searches indicated that the W box is the only known cis element that is statistically overrepresented in Arabidopsis nucleotide-binding leucine-rich repeat promoters. These results indicate that WRKY transcription factors can regulate expression of surveillance genes at the top of the defense-signaling cascade.
The oomycete pathogen Hyaloperonospora arabidopsidis is a natural pathogen of Arabidopsis thaliana and a laboratory model for (1) understanding how Arabidopsis responds to pathogen attack; (2) comparative and functional genomics of oomycetes; and (3) the molecular basis and evolution of obligate biotrophy. Here, we describe procedures for propagation and long-term storage of H. arabidopsidis, which address complications arising from its biotrophic lifestyle that precludes growth on synthetic media. We also describe four assays that provide information on different facets of the H. arabidopsidis-Arabidopsis interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.