Prematurity is among the leading risk factors for poor neurocognitive outcomes. Brains of preterm infants often show alterations in structure, connectivity, and electrical activity, but the underlying circuit mechanisms are unclear. Using electroencephalography (EEG) in preterm and term-born infants, we find that preterm birth accelerates the maturation of aperiodic EEG components including decreased spectral power in the theta and alpha bands and flattened 1/f slope. Using in vivo electrophysiology in preterm mice, we find that preterm birth mice also show a flattened 1/f slope. We further found that preterm birth in mice results in suppressed spontaneous firing of neurons in the primary visual cortex, and accelerated maturation of inhibitory circuits, as assessed through quantitative immunohistochemistry. In both mice and infants, preterm birth advanced the functional maturation of the cortex. Our studies identify specific effects of preterm birth on the spectral composition of the infant EEG, and point to a potential mechanism of these effects, highlighting the utility of our parallel approach in studying the neural circuit mechanisms of preterm birth-related brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.