Indium mediated allylation is a highly selective tool for synthetic chemists to create carbon–carbon bonds, but the first step, heterogeneous reaction of allyl halides at solid indium surfaces, is still poorly understood. For example, the nature of the solvent dramatically affects the rate of reaction, but solvent choice is often based on empirical experiments. Fundamental kinetic studies are the best way to study this effect, but the determination of heterogeneous rate constants is challenging. In an effort to better understand solvent effects, we use optical microscopy to determine heterogeneous rate constants for IMA in aqueous acetonitrile, methanol, ethanol, and 2-propanol. We fit the reaction rate data over a range of mass transport rates using only two adjustable parameters, the heterogeneous rate constant and the mass transport rate. The results emphasize the critical importance of water in determining the rate of reaction. Surprisingly, the polarity of the organic solvent in the mix does not have a major effect on the rate. It is hypothesized that the oxygen atom in water and alcohols is an especially effective Lewis base to stabilize the transition state and the organoindium intermediates, similar to the importance of the oxygen in ethers for the formation of Grignard reagents. This study again demonstrates the power of microscopy for the study of heterogeneous reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.