Adding conductive carbon fillers to insulating resins increases the composite electrical and thermal conductivity. Often, enough of a single type of carbon filler is added to achieve the desired conductivity while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid-crystal polymer. The rheological properties of the resulting single-filler composites were measured. In addition, the rheological properties of composites containing combinations of different carbon fillers were studied via a factorial design. In all cases, the viscosity increased with increasing filler volume fraction and followed a shear-thinning power-law model. The factorial design results indicated that each of the single fillers and all the filler combinations caused a statistically significant increase in the composite viscosity when compared at a shear rate of 500 s 21 or at a stress of 10 5 Pa. For composites containing synthetic graphite particles and/or carbon fiber, the viscosity variation with the volume fraction of carbon followed a modified Maron-Pierce equation. When compared at a constant volume fraction of carbon, composites containing carbon black showed viscosity enhancement above and beyond that shown by the other composites.
Adding conductive carbon fillers to insulating thermoplastic resin increases composite electrical and thermal conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity, while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, varying amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid crystal polymer. The rheology of resulting single filler composites was tested. In addition, the rheological properties of composites containing combinations of two different carbon fillers were studied via a factorial design. In all cases, viscosity increased with increasing filler volume fraction for all shear rates. Over the range of shear rates studied, the viscosity followed a shear-thinning power law model. The factorial design results indicated that each of the single fillers and all of the two filler combinations caused a statistically significant increase in composite viscosity at a shear rate of 1,000 s 21 . The composites containing carbon black and synthetic graphite caused the largest increase in viscosity. It is possible that the highly branched, high surface area structure of carbon black 'links' with the synthetic graphite particles, which results in increased composite viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.