For the first time, we report on methods to control and prevent polymer films from buckling. Buckled morphologies were created by thermally cycling or mechanically compressing a poly(dimethylsiloxane) substrate coated with a polyelectrolyte multilayer film. By variation of the dimensions of the surface topography relative to the buckling wavelength (e.g., pattern size is less than, equal to, and greater than the buckling wavelength), the orientation and the local morphology of the buckled films were controlled. On the basis of the information obtained, we demonstrate how to alleviate the unavoidable buckling by incorporating nanoparticles into the film. In addition, we studied the effect of the silica layer that results from oxygen plasma treatment and the critical temperature for permanent film buckling.
A simple method for creating patterned conductive multilayered polymer/exfoliated graphite nanoplatelet (xGnP) nanocomposite films is presented, by using the LBL assembly of xGnP and the intact pattern transfer of these films to a substrate. After four bilayers are deposited onto the stamp, conductive patterns can be created on virtually any substrate.
Two-dimensional patterned and controlled polyelectrolyte aggregations (e.g., tree-like ramified structures) created by microcontact printing have been demonstrated and discussed. Polyelectrolyte-micropatterned aggregations on surfaces were controlled by the micropattern size and shape of PDMS stamps. The formation of aggregates was dependent on the ink and surface conditions, and the aggregates consisted of two distinct layers; strongly adsorbed, primary uniform layers and weakly adsorbed, secondary aggregation layers positioned on top of the primary layers. The adsorption of the primary layers was strong enough not to be washed away, while the aggregated secondary layers were easily removed by washing. The aggregation of secondary layers showed typical tree-like ramified structures of fractal growth and aggregation. Directional and confined stamping led to directing and confining the growth of the fractal polyelectrolyte clusters, respectively. The micropatterned primary uniform layers were not removed by extensive washing, and they were identified by selective nickel plating and charged particle selective adsorption in which the surface formed positive and negative micropatterns. These functional and patterned surfaces have great potentials for advanced devices and sensors.
We present a novel method of controlling the specular and diffuse reflection of light by the electrostatic deposition of a spherical particle monolayer followed by electroless plating. Charged polystyrene colloidal particles, ranging in size from 100 nm to 5 μm, were adsorbed from solution onto oppositely charged polyelectrolyte multilayers (PEM). The monodisperse particle monolayers were coated with nickel in a two‐step electroless plating process using palladium catalysts. These surfaces can be used as diffusive metal reflectors with a uniformly controlled surface roughness due to the uniform size of deposited particles. In addition, the self‐assembled particles at the polymer and metal interface deflected the internal stresses that build‐up at the interface while the metal was being deposited. This allowed a thicker metal film to be deposited before delamination occurred. A UV‐VIS spectrometer with movable fiber optic cables was employed to characterize the optical properties of the reflectors. The optical fibers permit versatile and precise measurements of specular and diffuse reflectance. By measuring the angular dependent reflectance, we demonstrate how to estimate the distribution of reflected light from the nickel coated surface and how to calculate the ratio of specular and diffuse reflection in the total reflected light. Optical measurements of our nickel samples showed that this approach could be used to control the portion of diffuse reflection from 8.25 to 59.97 %. Additionally, a quartz crystal microbalance was employed to study the electroless nickel plating rate on PEM. Our proposed method is simple, cost‐effective and convenient for mass production because the process consists of a series of simple immersion steps without vacuum technology or special equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.