The frequency of ACKD increases with the duration of hemodialysis. The risk for the development of ACKD is increased in men and older patients. The malignant potential of ACKD persists after renal transplantation.
A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (P < .001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (P < .001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation.
The study of postural control has been dominated by experiments on the maintenance of quiet upright standing balance on flat stationary support surfaces that reveal only limited modes of potential configurations of balance stability/instability. Here we examine the self-organization properties of postural coordination as revealed in a dynamic balance task with a moving platform. We scaled a control parameter (platform frequency) to investigate the evolving nature of the coupled oscillator dynamics between center of mass (CoM) and platform. Recurrent map measures were used to reveal whether episodic postural control strategies exist that can be scaled by systematically changing the magnitude of platform motion. The findings showed that at higher platform frequencies (1.2 Hz), the CoM-Platform coupling was less deterministic than lower platform frequencies and evolved to intermittent postural control strategies that oscillated between periodic-chaotic transitions to maintain upright postural balance. Collectively, the recurrence map measures indicated that quasi-static postural attractor states were progressively emerging to the changing task constraints of platform frequency in the maintenance of postural stability. It appears that several dynamic modes of intermittent coupling in postural control can interchangeably co-exist and are expressed as a function of the control parameter of platform frequency.
The sensorimotor system prefers sway velocity information when maintaining upright posture. Sway velocity has a unique characteristic of being persistent on a short time-scale and anti-persistent on a longer time-scale. The time where the transition from persistence to anti-persistence occurs provides information about how sway velocity is controlled. It is, however, not clear what factors affect shifts in this transition point. This research investigated postural responses to support surface movements of different temporal correlations and movement velocities. Participants stood on a force platform that was translated according to three different levels of temporal correlation. White noise had no correlation, pink noise had moderate correlation, and sine wave movements had very strong correlation. Each correlation structure was analyzed at five different average movement velocities (0.5, 1.0, 2.0, 3.0, and 4.0 cm·s), as well as one trial of quiet stance. Center of pressure velocity was analyzed using fractal analysis to determine the transition from persistent to anti-persistent behavior, as well as the strength of persistence. As movement velocity increased, the time to transition became longer for the sine wave and shorter for the white and pink noise movements. Likewise, during the persistent time-scale, the sine wave resulted in the strongest correlation, while white and pink noise had weaker correlations. At the highest three movement velocities, the strength of persistence was lower for the white noise compared to pink noise movements. These results demonstrate that the predictability and velocity of support surface oscillations affect the time-scale threshold between persistent and anti-persistent postural responses. Consequently, whether a feedforward or feedback control is utilized for appropriate postural responses may also be determined by the predictability and velocity of environmental stimuli. The study provides new insight into flexibility and adaptability in postural control. This information has implications for the design of rehabilitative protocols in neuromuscular control.
Walking synchronized to external cues is a common practice in clinical settings. Several research studies showed that this popular gait rehabilitation tool alters gait variability. There is also recent evidence which suggests that alterations in the temporal structure of the external cues could restore gait variability at healthy levels. It is unknown, however, if such alterations produce similar effects if the cueing modalities used are different; visual or auditory. The modality could affect gait variability differentially, since there is evidence that auditory cues mostly act in the temporal domain of gait, while visual cues act in the spatial domain of gait. This study investigated how synchronizing steps with visual and auditory cues that are presented with different temporal structures could affect gait variability during treadmill walking. Three different temporal structured stimuli were used, invariant, fractal and random, in both modalities. Stride times, length and speed were determined, and their fractal scaling (an indicator of complexity) and coefficient of variation (CV) were calculated. No differences were observed in the CV, regardless of the cueing modality and the temporal structure of the stimuli. In terms of the stride time's fractal scaling, we observed that the fractal stimulus induced higher values compared to random and invariant stimuli. The same was also observed in stride length, but only for the visual cueing modality. No differences were observed for stride speed. The selection of the cueing modality seems to be an important feature of gait rehabilitation. Visual cues are possibly a better choice due to the dependency on vision during walking. This is particularly evident during treadmill walking, a common practice in a clinical setting. Because of the treadmill effect on the temporal domain of gait, the use of auditory cues can be minimal, compared to visual cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.