The classical laboratory tests for exposure to organophosphorus toxicants (OP) are inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in blood. In a search for new biomarkers of OP exposure, we treated mice with a biotinylated organophosphorus agent, FP-biotin. The biotinylated proteins in muscle were purified by binding to avidin-Sepharose, separated by gel electrophoresis, digested with trypsin, and identified from their fragmentation patterns on a quadrupole time-of-flight mass spectrometer. Albumin and ES1 carboxylesterase (EC 3.1.1.1) were found to be major targets of FP-biotin. These FP-biotinylated proteins were also identified in mouse plasma by comparing band patterns on nondenaturing gels stained for albumin and carboxylesterase activity, with band patterns on blots hybridized with Streptavidin Alexa-680. Two additional FP-biotin targets, AChE (EC 3.1.1.7) and BChE (EC 3.1.1.8), were identified in mouse plasma by finding that enzyme activity was inhibited 50-80%. Mouse plasma contained eight additional FP-biotinylated bands whose identity has not yet been determined. In vitro experiments with human plasma showed that chlorpyrifos oxon, echothiophate, malaoxon, paraoxon, methyl paraoxon, diazoxon, diisopropylfluorophosphate, and dichlorvos competed with FP-biotin for binding to human albumin. Though experiments with purified albumin have previously shown that albumin covalently binds OP, this is the first report of OP binding to albumin in a living animal. Carboxylesterase is not a biomarker in man because humans have no carboxylesterase in blood. It is concluded that OP bound to albumin could serve as a new biomarker of OP exposure in man.
A new class of multi-target compounds was synthesized by linking a novel selective serotonin reuptake inhibitor (SSRI)a to a PDE4 inhibitor. The new dual PDE4 inhibitor/SSRI showed antidepressant-like activity in the forced swim test in mice The SSRIs 14, 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine and 15, 2-{5-[3-(5-fluoro-2-methoxyphenyl)-propyl]-tetrahydro-furan-2-yl}-ethylamine were both individually linked to the PDE4 inhibitor 19, (4-(3,4-dimethoxy-phenyl)-4a,5,8,8a-tetrahydro-2H-phthalazin-1-one) via a five carbon chain. The dual PDE4 inhibitor/SSRI 21, 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine)-pentyl]-4,5,8,8a-tetrahydro-2H-phthalazin-1-one showed potent and selective serotonin reuptake inhibition (IC 50 value of 127 nM). The dual PDE4 inhibitor/ SSRI 21 also inhibited PDE4D3 with a K i value of 2.0 nM. The dual PDE4 inhibitor/SSRI was significantly more effective than the individual SSRI alone or fluoxetine in the forced swim test at standard doses. On a molar basis, the antidepressant-like effect of the dual PDE4 inhibitor/SSRI 21 showed a 129-fold increase in in vivo efficacy compared to fluoxetine.
A biotinylated organophosphate could be useful for identifying proteins that react with organophosphorus toxicants (OP). FP-biotin, 10-(fluoroethoxyphosphinyl)-N-(biotinamidopentyl)decanamide, was synthesized and found to be stable in methanol and chloroform but less stable in water. Because acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are known to be sensitive targets of OP, their reactivity with FP-biotin was tested. The rate constant for reaction with human AChE was 1.8 x 10(7) M(-1) min(-1), and for human BChE, it was 1.6 x 10(8) M(-1) min(-1). A phosphorus stereoisomer, constituting about 50% of the FP-biotin preparation, appeared to be the reactive species. The binding affinity was estimated to be >85 nM for AChE and >5.8 nM for BChE. It was concluded that FP-biotin is a potent OP, well-suited for searching for new biomarkers of OP exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.