This paper explores the use of innovative kernels based on syntactic and semantic structures for a target relation extraction task. Syntax is derived from constituent and dependency parse trees whereas semantics concerns to entity types and lexical sequences. We investigate the effectiveness of such representations in the automated relation extraction from texts. We process the above data by means of Support Vector Machines along with the syntactic tree, the partial tree and the word sequence kernels. Our study on the ACE 2004 corpus illustrates that the combination of the above kernels achieves high effectiveness and significantly improves the current state-of-the-art.
In this contribution, we propose a watershed-based method with support from external data sources and visual information to detect social events in web multimedia. The idea is based on two main observations: (1) people cannot be involved in more than one event at the same time, and (2) people tend to introduce similar annotations for all images associated to the same event. Based on these observations, the metadata is turned to an image so that each row contains all records belonging to one user; and these records are sorted by time. Thus, the social event detection is turned to watershed-based image segmentation, where Markers are generated by using (keyword, location, visual) features with support of external data sources, and the Flood progress is carried on by taking into account (tags set, time, visual) features. We test our algorithm on the MediaEval 2012 dataset both using only external data but also introducing visual information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.