ATP-sensitive potassium (K ATP ) channels in the pancreatic  cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca 2؉ inf lux and exocytosis. Metabolic regulation of K ATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The  cell K ATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotidebinding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate K ATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg 2؉ caused an apparent reduction in the inhibitory action of ATP on wild-type K ATP channels, and MgATP actually activated K ATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates K ATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg 2؉ .ATP-sensitive K ϩ (K ATP ) channels couple cell metabolism to electrical activity. They thereby regulate insulin secretion from pancreatic  cells, participate in the response to cardiac and cerebral ischemia, control vascular smooth muscle tone, modulate transmitter release at brain synapses, and mediate K ϩ fluxes across epithelial cells (1-3). It is thought that metabolic regulation is achieved, at least in part, by variation in the intracellular concentrations of the adenine nucleotides ATP and ADP. These nucleotides influence K ATP channel activity by interacting with two physically distinct sites on the K ATP channel: interaction with one site leads to channel inhibition whereas interaction with the other site causes an increase in channel activity (4, 5). ADP interacts with both sites, being stimulatory at low concentrations and inhibitory at high concentrations. Although it is well established that ATP interacts with the inhibitory site, it is not known whether it is also effective at the stimulatory site. The properties of the two sites differ in their requirement for Mg 2ϩ , the divalent cation being required for the potentiatory but not the inhibitory action of ADP (4, 6, 7).The  cell K ATP channel consists of two types of subunit (8, 9): an inwardly rectifying K ϩ channel subunit (Kir6.2) and a sulfonylurea receptor subunit (SUR1), which assemble in a 4:4 stoichiometry to form an octameric channel (10-12). Both ...
We have studied modulation of the slow Ca(2+)-activated K(+) current (I(sAHP)) in CA1 hippocampal pyramidal neurons by three peptide transmitters: corticotropin releasing factor (CRF, also called corticotropin releasing hormone, CRH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). These peptides are known to be expressed in interneurons. Using whole cell voltage clamp in hippocampal slices from young rats, in the presence of tetrodotoxin (TTX, 0.5 microM) and tetraethylammonium (TEA, 5 mM), I(sAHP) was measured after a brief depolarizing voltage step eliciting inward Ca(2+) current. Each of the peptides CRF (100-250 nM), VIP (400 nM), and CGRP (1 microM) significantly reduced the amplitude of I(sAHP). Thus the I(sAHP) amplitude was reduced to 22% by 100 nM CRF, to 17% by 250 nM CRF, to 22% by 400 nM VIP, and to 40% by 1 microM CGRP. We found no consistent concomitant changes in the Ca(2+) current or in the time course of I(sAHP) for any of the three peptides, suggesting that the suppression of I(sAHP) was not secondary to a general suppression of Ca(2+) channel activity. Because each of these peptides is known to activate the cyclic AMP (cAMP) cascade in various cell types, and I(sAHP) is known to be suppressed by cAMP via the cAMP-dependent protein kinase (PKA), we tested whether the effects on I(sAHP) by CRF, VIP, and CGRP are mediated by PKA. Intracellular application of the PKA-inhibitor Rp-cAMPS significantly reduced the suppression of I(sAHP) by CRF, VIP, and CGRP. Thus with 1 mM Rp-cAMPS in the recording pipette, the average suppression of I(sAHP) was reduced from 78 to 26% for 100 nM CRF, from 83 to 32% for 250 nM CRF, from 78 to 30% for 400 nM VIP, and from 60 to 7% for 1 microM CGRP. We conclude that CRF, VIP, and CGRP suppress the slow Ca(2+)-activated K(+) current, I(sAHP), in CA1 hippocampal pyramidal neurons by activating the cAMP-dependent protein kinase, PKA. Together with the monoamine transmitters norepinephrine, serotonin, histamine, and dopamine, these peptide transmitters all converge on the cAMP cascade modulating I(sAHP).
BackgroundOmega-3 PUFAs are known to have anti-inflammatory properties, and different mechanisms are involved. GPR120 is a G-protein coupled receptor that has recently received attention because of its anti-inflammatory signalling properties after binding omega-3 PUFAs. However, both omega-3 and omega-6 PUFAs are natural GPR120 ligands. The aim of this study was to study possible differences in GPR120-mediated signalling events after treatment with different long-chain PUFAs in intestinal epithelial cells. We also investigated possible GPR120-mediated anti-inflammatory effects of different long-chain PUFAs that may be relevant in the understanding of how dietary PUFAs influence inflammatory responses in inflammatory diseases such as IBD.MethodsWe used Caco-2 cells as a model system to study GPR120-mediated signalling events because we found this cell line to express GPR120, but not GPR40, another plasma membrane receptor for medium- and long chain fatty acids. Increase in cytosolic Ca2+concentration, activation of MAP kinase ERK1/2 and the inhibition of IL-1β induced NF-κB activity were studied to reveal potential differences in the activation of GPR120 by the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the omega-6 PUFA arachidonic acid (AA).ResultsWe found that EPA, DHA and AA enhanced the cytosolic concentration of the second messenger Ca2+ with the same efficiency, but with different kinetics. Both omega-3 and omega-6 PUFAs activated MAP kinase ERK1/2, but differences regarding kinetics and intensity were also observed in this pathway. ERK1/2 activation was shown to be dependent upon EGFR and Raf-1. We further investigated the ability of EPA, DHA and AA to inhibit NF-κB activity in Caco-2 cells. All PUFAs tested were able to inhibit IL-1β induced breakdown of IκBα after binding to GPR120, but with different potency.ConclusionsOur results show that EPA, DHA and AA elicit the same signalling events, but with different kinetics and efficiency through GPR120 in Caco-2 cells. We show, for the first time, that both omega-3 and omega-6 PUFAs inhibit NF-κB activation in intestinal epithelial cells. Our results may be important for understanding how dietary PUFAs influence inflammatory processes relevant in delineating effects of PUFAs in the treatment of IBD.
The slow Ca2+-activated K+ current, sIAHP, underlying spike frequency adaptation, was recorded with the whole cell patch-clamp technique in CA1 pyramidal neurons in rat hippocampal slices. Inhibitors of serine/threonine protein phosphatases (microcystin, calyculin A, cantharidic acid) caused a gradual decrease of sIAHP amplitude, suggesting the presence of a basal phosphorylation-dephosphorylation turnover regulating sIAHP. Because selective calcineurin (PP-2B) inhibitors did not affect the amplitude of sIAHP, protein phosphatase 1 (PP-1) or 2A (PP-2A) are most likely involved in the basal regulation of this current. The ATP analogue, ATP-gamma-S, caused a gradual decrease in the sIAHP amplitude, supporting a role of protein phosphorylation in the basal modulation of sIAHP. When the protein kinase A (PKA) inhibitor adenosine-3', 5'-monophosphorothioate, Rp-isomer (Rp-cAMPS) was coapplied with the phosphatase inhibitor microcystin, it prevented the decrease in the sIAHP amplitude that was observed when microcystin alone was applied. Furthermore, inhibition of PKA by Rp-cAMPS led to an increase in the sIAHP amplitude. Finally, an adenylyl cyclase inhibitor (SQ22, 536) and adenosine 3',5'-cyclic monophosphate-specific type IV phosphodiesterase inhibitors (Ro 20-1724 and rolipram) led to an increase or a decrease in the sIAHP amplitude, respectively. These findings suggest that a balance between basally active PKA and a phosphatase (PP-1 or PP-2A) is responsible for the tonic modulation of sIAHP, resulting in a continuous modulation of excitability and firing properties of hippocampal pyramidal neurons.
The pore region of the majority of K+ channels contains the highly conserved GYGD sequence, known as the K+ channel signature sequence, where the GYG is critical for K+ selectivity (Heginbotham, L., T. Abramson, and R. MacKinnon. 1992. Science. 258:1152–1155). Exchanging the aspartate residue with asparagine in this sequence abolishes ionic conductance of the Shaker K+ channel (D447N) (Hurst, R.S., L. Toro, and E. Stefani. 1996. FEBS Lett. 388:59–65). In contrast, we found that the corresponding mutation (D292N) in the pore forming α subunit (hSlo) of the voltage- and Ca2+-activated K+ channel (BKCa, MaxiK) did not prevent conduction but reduced single channel conductance. We have investigated the role of outer pore negative charges in ion conduction (this paper) and channel gating (Haug, T., R. Olcese, T. Ligia, and E. Stefani. 2004. J. Gen Physiol. 124:185–197). In symmetrical 120 mM [K+], the D292N mutation reduced the outward single channel conductance by ∼40% and nearly abolished inward K+ flow (outward rectification). This rectification was partially relieved by increasing the external K+ concentration to 700 mM. Small inward currents were resolved by introducing an additional mutation (R207Q) that greatly increases the open probability of the channel. A four-state multi-ion pore model that incorporates the effects of surface charge was used to simulate the essential properties of channel conduction. The conduction properties of the mutant channel (D292N) could be predicted by a simple ∼8.5-fold reduction of the surface charge density without altering any other parameter. These results indicate that the aspartate residue in the BKCa pore plays a key role in conduction and suggest that the pore structure is not affected by the mutation. We speculate that the negative charge strongly accumulates K+ in the outer vestibule close to the selectivity filter, thus increasing the rate of ion entry into the pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.