Murrili, the third meteorite recovered by the Desert Fireball Network, is analyzed using mineralogy, oxygen isotopes, bulk chemistry, physical properties, noble gases, and cosmogenic radionuclides. The modal mineralogy, bulk chemistry, magnetic susceptibility, physical properties, and oxygen isotopes of Murrili point to it being an H5 ordinary chondrite. It is heterogeneously shocked (S2–S5), depending on the method used to determine it, although Murrili is not obviously brecciated in texture. Cosmogenic radionuclides yield a cosmic ray exposure age of 6–8 Ma, and a pre‐atmospheric meteoroid size of 15–20 cm in radius. Murrili’s fall and subsequent month‐long embedment into the salt lake Kati Thanda significantly altered the whole rock, evident in its Mössbauer spectra, and visual inspection of cut sections. Murrili may have experienced minor, but subsequent, impacts after its formation 4475.3 ± 2.3 Ma, which left it heterogeneously shocked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.