Cyclic GMP is recognized as an important intracellular mediator of extracellular signals such as nitric oxide and natriuretic peptides. Cyclic GMP interacts with three types of intracellular receptor proteins: cGMP-dependent protein kinases, cGMP-regulated ion channels, and cGMP-regulated cyclic nucleotide phosphodiesterases. This means that cGMP can alter cell function through protein phosphorylation or through mechanisms not directly related to protein phosphorylation. Cyclic GMP appears to regulate a number of intracellular processes, such as vascular smooth muscle relaxation and neutrophil activation, through these receptor proteins in the cell. It is also becoming clear that the localization of these cGMP receptor proteins in the cell is an important factor in the regulation of cell function by cGMP.
Recent studies indicate that nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) may inhibit the proliferation of vascular smooth muscle cells (SMC) in vitro. The purpose of this study was to investigate the mechanism of NO- and cGMP-dependent inhibition of cultured rat aortic SMC. The cytokine interleukin-1 beta (IL-1 beta) inhibited serum- and platelet-derived growth factor-stimulated [3H]thymidine incorporation into DNA in subcultured rat aortic SMC. Incubation with IL-1 beta for 24 h markedly increased cGMP levels but not adenosine 3',5'-cyclic monophosphate (cAMP) levels. However, the IL-1 beta-induced increase in cGMP was correlated with an activation of the cAMP-dependent protein kinase (cAMP kinase) activity ratio. The activation of the cAMP kinase was prevented by treatments that blocked NO and cGMP production. The NO-generating vasodilator, S-nitroso-N-acetylpenicillamine (SNAP) also inhibited DNA synthesis and elevated cGMP levels. The inhibition of DNA synthesis by both IL-1 beta and SNAP was observed only when cGMP levels were elevated to high levels (10-fold or more). As was the case for IL-1 beta, SNAP increased the activity ratio of cAMP kinase. Selective inhibition of cAMP kinase using (R)-p-bromoadenosine 3',5'-cyclic monophosphorothioate prevented the inhibition of proliferation by IL-1 beta. By contrast, the inhibitor of the cGMP-dependent protein kinase, (R)-p-bromoguanosine 3',5'-cyclic monophosphorothioate, had no effect on IL-1 beta-induced inhibition of cellular proliferation. These studies suggest that cGMP-dependent activation of the cAMP kinase may be responsible in part at least for the NO-dependent inhibition of proliferation of subcultured rat aortic SMC.
Nitric oxide (NO) and cyclic guanosine 3’,5’-monophosphate (cGMP) have been reported to prevent vascular smooth muscle cell (VSMC) proliferation and have beneficial effects to reduce intimal thickening in response to arterial injury. The purpose of this study was to determine whether the downstream effector molecule of NO-cGMP signaling, cyclic GMP-dependent protein kinase (PKG), regulates phenotypic modulation and proliferation in cultured rat aortic VSMC. PKG-expressing VSMC lines were created by transfection of PKG-deficient cell lines and characterized. All forms of PKG, i.e. PKG-Iα and PKG-Iβ, as well as the constitutively active catalytic domain of PKG-I, transformed dedifferentiated ‘synthetic’ VSMC to a more contractile-like morphology. PKG expression resulted in an increased production of the contractile phenotype marker proteins, smooth muscle myosin heavy chain-2, calponin and α-actin and restored the capacity of cAMP and cGMP analogues to inhibit platelet-derived growth factor (PDGF)-induced cell migration. On the other hand, PKG expression had no significant effects on PDGF-induced cell proliferation. These results suggest that PKG expression contributes to the regulation of a contractile-like phenotypic expression in cultured VSMC, and the suppression of PKG expression during cultured growth in vitro may permit the modulation of cells to a more synthetic, dedifferentiated phenotype.
The major action of forskolin, the diterpine activator of adenylate cyclase, in primary (unpassaged) rat aortic smooth muscle cells is to reduce vasopressin-stimulated Ca2+ concentrations. In repetitively passaged cells, however, forskolin by itself increased Ca2+ levels by apparently stimulating Ca2+ uptake into the cell and had much smaller effects on inhibiting vasopressin-stimulated Ca2+ elevations. Both primary and passaged smooth muscle cells contained adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase. Guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase was greatly reduced or absent in passaged smooth muscle cells. The introduction of purified cGMP-dependent protein kinase into the cytoplasm of passaged cells prevented forskolin from elevating intracellular Ca2+ and restored the capacity of forskolin to reduce vasopressin-stimulated Ca2+ mobilization. Similar effects were observed for isoproterenol in passaged smooth muscle cells. When introduced into cells, the active catalytic subunit of the cAMP-dependent protein kinase did not lead to reductions in Ca2+ levels. These results suggest that cAMP elevations lead to profound changes in Ca2+ metabolism through activation of both cAMP- and cGMP-dependent protein kinases. Activation of cGMP-dependent protein kinase by cAMP leads to the reduction in intracellular Ca2+, whereas activation of cAMP-dependent protein kinase may only mediate the uptake of Ca2+ from extracellular sources.
Cyclic GMP-dependent protein kinase (cGMP kinase) is the major receptor protein for cGMP in vascular smooth muscle. Vascular smooth muscle cells (VSMC) isolated from the rat aorta express type I cGMP kinase at high levels, but expression decreases markedly upon passage of the cells. In primary or early passage, the expression of cGMP kinase is lowest when cells are plated at low density as assessed by immunological and Northern analyses. Expression increases at confluence and is maintained in postconfluent cultures. With repeated passaging, however, the levels of cGMP kinase decrease even in confluent and postconfluent cultures so that after several passages enzyme levels are undetectable. The decrease in expression in passaged cells is not due to exposure to serum-derived growth factors, but rather on the repeated exposure of cells to conditions in which cell density is reduced (i.e., subculturing). These results indicate that aortic VSMC grown at low density or those repetitively passaged have reduced expression of cGMP kinase, and thus may not represent appropriate cultures with which to investigate the role of nitric oxide and cGMP in VSMC function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.