This study proposes the design of an active stabilizing system (ASAS) for a single-track vehicle. Using the gyroscopic effects of two flywheels, this system can generate control torque to stabilize the vehicle in cases where there is centrifugal force of turning. To control the flywheel gimbals to generate stabilizing torque, a model predictive controller (MPC) is applied to control the system. For the controller design and performance evaluations, a model of a gyroscopic inverted pendulum is developed. Control strategies are proposed to stabilize the vehicle in the cases of straight running, circular motion, and path following. The results of the proposed stratgies when controlling the gyroscopic inverted pendulum showed good performance even with physical limitations of the control torques. In order to evaluate the real-time performance and the feasibility of the MPC, a real-time simulator is employed, which includes two embedded STM32F407 boards. The dynamic system and the control algorithms are respectively embedded into two STM32F407 boards for real-time simulation. Implementations of the MPC in this study demonstrate that the proposed controllers are feasible for real-time applications.
This study designs and controls an active stabilizing assistant system (ASAS) for a bicycle. Using the gyroscopic effect of two spinning flywheels, the ASAS generates torques that assist the rider to stabilize the bicycle in various riding modes. Riding performance and the rider’s safety are improved. To simulate the system dynamic behavior, a model of a bicycle–rider system with the ASAS on the rear seat is developed. This model has 14 degrees of freedom and is derived using Lagrange equations. In order to evaluate the efficacy of the ASAS in interacting with the rider’s control actions, simulations of the bicycle–rider system with the ASAS are conducted. The results for the same rider for the bicycle with an ASAS and on a traditional bicycle are compared for various riding conditions. In three cases of simulation for different riding conditions, the bicycle with the proposed ASAS handles better, with fewer control actions being required than for a traditional bicycle.
In this research, a design of an active stabilizing assistant system (ASAS) for a bicycle is proposed. Using gyroscopic effects of two spinning flywheels, the ASAS generates assistant torques which can assist the rider to stabilize his/her bicycle in various riding strategies. Hence, it can improve the riding performance and also the rider's safety. To simulate the dynamic behaviors of the system, a model of a bicycle-rider system with the ASAS on the rear seat is developed. This model consists of 14 degrees of freedom and is derived by using Lagrange equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.