Today, oil and gas fields gradually become mature with a high amount of water being produced (water cut (WC)), favoring conditions for gas hydrate formation up to the blockage of pipelines. The pressure drop is an important parameter which is closely related to the multiphase flow characteristics, risk of plugging and security of flowlines. This study developed a model based on flowloop experiments to predict the relative pressure drop in pipelines once hydrate is formed in high water cutsystems in the absence and presence of AA-LDHI and/or salt. In this model, the relative pressure drop during flow is a function of hydrate volume and hydrate agglomerate structure, represented by the volume fraction factor (Kv). This parameter is adjusted for each experiment between 1.00 and 2.74. The structure of the hydrate agglomerates can be predicted from the measured relative pressure drop as well as their impact on the flow, especially in case of a homogeneous suspension of hydrates in the flow.
Design and operation of auxiliary underground workings in coal mines involves substantiation of parameters of coal pillars and requires development of new approaches to substantiate their geometrics. On the one hand, sufficient stability of a “rock mass – working – coal pillar” system should be ensured. On the other hand, the parameters of “frozen” coal reserves in the pillars should be justified. The joint solution of these two problems requires accurate forecasting based on modern digital models of a rock mass. In this study, a model of rock mass and mine workings with different dimensions of a coal pillar is presented with the use of Flac3D software. The simulation findings showed that when developing sloping coal seams, the volume of coal extraction in a longwall has an effect on the stress-strain state of the enclosing rock mass. During the study different factors having effect on geometrics of a coal pillar were analyzed, and their influence on the field of stresses and shear of inclined layers in a rock mass was studied, and the size of the plastic deformation zone around an auxiliary mine working was also determined. The study findings are also of practical importance in terms of substantiating the parameters of a working support design. The size of coal pillar is also connected with the support type. It should be taken into account that bolts should be of sufficient length to ensure firm fixing and located in the zone of intact rocks. The research showed that a coal pillar should be 10 to 15 m wide in order to ensure optimal mining conditions and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.