Information on land use and land cover (LULC) including forest cover is important for the development of strategies for land planning and management. Satellite remotely sensed data of varying resolutions have been an unmatched source of such information that can be used to produce estimates with a greater degree of confidence than traditional inventory estimates. However, use of these data has always been a challenge in tropical regions owing to the complexity of the biophysical environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric machine learning classifiers (improved k-nearest neighbors, random forests, and support vector machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year 2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km2 study area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy seasons. Eleven different LULC classes were discriminated of which five were forest classes. For each combination of temporal image set and classifier, a confusion matrix was constructed using independent reference data and pixel classifications, and the area on the ground of each class was estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%, and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged from 70 km2 (1% of the study area) to 2200 km2 (34% of the study area) with greater uncertainties for smaller classes.
<p><strong>Abstract.</strong> This study used the Random Forest classifier (RF) running in R environment to map Land use/Land cover (LULC) of Dak Lak province in Vietnam based on the Landsat 8 OLI. The values of two RF parameters of ntree (number of tree) and mtry (the number of variables used to split at each node) were tested and compared. In current study the best results indicate the number of suitable decision trees involved in the classification process is 300 (ntree), and the suitable number of variables used to split at each node is 4 variables (mtry). These parameters were used to classify 7 bands multi-spectral resolution from 1&ndash;7 of Landsat 8 into ten classes of LULC including natural broad-leaved evergreen, semi-evergreen, dipterocarp deciduous forest, plantation forest, rubber, coffee land, crop land, barren land, residential area and water surface. The overall accuracy of 90.32&thinsp;% with Kappa coefficient of 0.8434 was found in this case.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.