Fuzzy logic has been used as a means of interpreting vague, incomplete and even contradictory information into a compromised rule base in artificial intelligence such as machine decision-making. Within this context, fuzzy logic can be applied in the field of expert systems to provide additional flexibilities in constructing a working rule base: different experts' opinions can be incorporated into the same rule base, and each opinion can be modeled in a rather vague notion of human language. As some illustrative application examples, this paper describes how fuzzy logic can be used in expert systems. More precisely, it demonstrates the following applications: (i) a healthcare diagnostic system, (ii) an autofocus camera lens system and (iii) a financial decision system. For each application, basic rules are described, the calculation method is outlined and numerical simulation is provided. These applications demonstrate the suitability and performance of fuzzy logic in expert systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.