Investigating the origin of parthenogenesis through interspecific hybridization can provide insight into how meiosis may be altered by genetic incompatibilities, which is fundamental for our understanding of the formation of reproductive barriers. Yet the genetic mechanisms giving rise to obligate parthenogenesis in eukaryotes remain understudied. In the microcrustacean Daphnia pulex species complex, obligately parthenogenetic (OP) isolates emerged as backcrosses of two cyclically parthenogenetic (CP) parental species, D. pulex and D. pulicaria, two closely related but ecologically distinct species. We examine the genome-wide expression in OP females at the early resting egg production stage, a life-history stage distinguishing OP and CP reproductive strategies, in comparison to CP females of the same stage from the two parental species. Our analyses of the expression data reveal that underdominant and overdominant genes are abundant in OP isolates, suggesting widespread regulatory incompatibilities between the parental species. More importantly, underdominant genes (i.e., genes with expression lower than both parentals) in the OP isolates are enriched in meiosis and cell-cycle pathways, indicating an important role of underdominance in the origin of obligate parthenogenesis. Furthermore, metabolic and biosynthesis pathways enriched with overdominant genes (i.e., expression higher than both parentals) are another genomic signature of OP isolates.
Cyclical parthenogenesis, where females can engage in sexual or asexual reproduction depending on environmental conditions, represents a novel reproductive phenotype that emerged during eukaryotic evolution. The fact that environmental conditions can trigger cyclically parthenogens to engage in distinct reproductive modes strongly suggests that gene expression plays a key role in the origin of cyclical parthenogenesis. However, the genetic basis underlying cyclical parthenogenesis remains understudied. In this study we characterize the female transcriptomic signature of sexual vs. asexual reproduction in the cyclically parthenogenetic microcrustacean Daphnia pulex and D. pulicaria. Our analyses of differentially expressed genes, pathway enrichment, and GO term enrichment clearly show that compared to sexual reproduction the asexual reproductive stage is characterized by both the under-regulation of meiosis and cell-cycle genes and the up-regulation of metabolic genes. We suggest that the under-regulation of meiosis and cell-cycle genes is responsible for the origin of parthenogenesis from meiosis, whereas differentially expressed metabolic genes may mediate choice of asexual vs. sexual reproductive pathway. Furthermore, our analyses identify some cases of divergent expression among gene family members (e.g., doublesex, NOTCH2) associated with asexual or sexual reproductive stage, suggesting potential functional divergence among gene family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.