Given sufficiently many components, it is often cited that finite mixture models can approximate any other probability density function (pdf) to an arbitrary degree of accuracy. Unfortunately, the nature of this approximation result is often left unclear. We prove that finite mixture models constructed from pdfs in C 0 can be used to conduct approximation of various classes of approximands in a number of different modes. That is, we prove approximands in C 0 can be uniformly approximated, approximands in C b can be uniformly approximated on compact sets, and approximands in L p can be approximated with respect to the L p , for p ∈ [1, ∞). Furthermore, we also prove that measurable functions can be approximated, almost everywhere.
Mixture of experts (MoE) models are widely applied for conditional probability density estimation problems. We demonstrate the richness of the class of MoE models by proving denseness results in Lebesgue spaces, when inputs and outputs variables are both compactly supported. We further prove an almost uniform convergence result when the input is univariate. Auxiliary lemmas are proved regarding the richness of the soft-max gating function class, and their relationships to the class of Gaussian gating functions.
Mixture of experts (MoE) is a popular class of models in statistics and machine learning that has sustained attention over the years, due to its flexibility and effectiveness. We consider the Gaussian-gated localized MoE (GLoME) regression model for modeling heterogeneous data. This model poses challenging questions with respect to the statistical estimation and model selection problems, including feature selection, both from the computational and theoretical points of view. We study the problem of estimating the number of components of the GLoME model, in a penalized maximum likelihood estimation framework. We provide a lower bound on the penalty that ensures a weak oracle inequality is satisfied by our estimator. To support our theoretical result, we perform numerical experiments on simulated and real data, which illustrate the performance of our finite-sample oracle inequality.
Mixture-of-experts (MoE) models are a popular framework for modeling heterogeneity in data, for both regression and classification problems in statistics and machine learning, due to their flexibility and the abundance of statistical estimation and model choice tools. Such flexibility comes from allowing the mixture weights (or gating functions) in the MoE model to depend on the explanatory variables, along with the experts (or component densities). This permits the modeling of data arising from more complex data generating processes, compared to the classical finite mixtures and finite mixtures of regression models, whose mixing parameters are independent of the covariates. The use of MoE models in a high-dimensional setting, when the number of explanatory variables can be much larger than the sample size (i.e., p ≫ n), is challenging from a computational point of view, and in particular from a theoretical point of view, where the literature is still lacking results in dealing with the curse of dimensionality, in both the statistical estimation and feature selection. We consider the finite mixture-of-experts model with soft-max gating functions and Gaussian experts for high-dimensional regression on heterogeneous data, and its l 1 -regularized estimation via the Lasso. We focus on the Lasso estimation properties rather than its feature selection properties. We provide a lower bound on the regularization parameter of the Lasso function that ensures an l 1 -oracle inequality satisfied by the Lasso estimator according to the Kullback-Leibler loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.