A Sonogashira experiment was transformed into a problem-based learning platform for third-year undergraduate students. Given a target that could be synthesized in a single step, students worked in groups to investigate which method was the best for large-scale production. Through this practical scenario, students learn to conduct a literature search, select procedures, practice their synthesis skills, and evaluate their results in a real-world context.
One major goal of organometallic chemists is the direct functionalization of the bonds most recurrent in organic molecules: C-H, C-C, C-O, and C-N. An even grander challenge is C-C bond formation when both precursors are of this category. Parallel to this is the synthetic goal of achieving reaction selectivity that contrasts with conventional methods. Electrophilic aromatic substitution (EAS) via Friedel-Crafts acylation is the most renowned method for the synthesis of aryl ketones, a common structural motif of many pharmaceuticals, agrochemicals, fragrances, dyes, and other commodity chemicals. However, an EAS synthetic strategy is only effective if the desired site for acylation is in accordance with the electronic-controlled regioselectivity of the reaction. Herein we report steric-controlled regioselective arene acylation with salicylate esters via iridium catalysis to access distinctly substituted benzophenones. Experimental and computational data indicate a unique reaction mechanism that integrates C-O activation and C-H activation with a single iridium catalyst without an exogenous oxidant or base. We disclose an extensive exploration of the synthetic scope of both the arene and the ester components, culminating in the concise synthesis of the potent anticancer agent hydroxyphenstatin.
AG7088 was identified as a good starting point for modification, leading to an efficient and bio-available inhibitor for the SARS coronavirus main proteinase (SARS-CoV M pro ). Synthesis of intermediate 1 and analogues proceeded via a highly diastereoselective indium-mediated allylation of a-aminoaldehydes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.