information generate highly accurate and economical long-range sequencing short-read second-generation sequencing systems to routinely Ultralow-input single-tube linked-read library method enables
Abstract:Software-defined Networks (SDN), in particular OpenFlow, is a new networking paradigm enabling innovation through network programmability. Over past few years, many applications have been built using SDN such as server load balancing, virtual-machine migration, traffic engineering and access control. In this paper, we focus on using SDN as an approach for energy-aware routing (EAR). Since traffic load has a small influence on power consumption of routers, EAR allows to put unused links into sleep mode to save energy. SDN can collect traffic matrix and then computes routing solutions satisfying QoS while being minimal in energy consumption. However, prior works on EAR have assumed that the table of OpenFlow switch can hold an infinite number of rules. In practice, this assumption does not hold since the flow table is implemented in Ternary Content Addressable Memory (TCAM) which is expensive and powerhungry. In this paper, we propose an optimization method to minimize energy consumption for a backbone network while respecting capacity constraints on links and rule space constraints on routers. In details, we present an exact formulation using Integer Linear Program (ILP) and introduce efficient greedy heuristic algorithm for large networks. Based on simulations, we show that using this smart rule space allocation, it is possible to save almost as much power consumption as in the classical EAR approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.