The GP function as the "integration centers" that modulate the autonomic interactions between the extrinsic and intrinsic cardiac ANS. This interaction is substantially more intricate than previously thought.
We report that processing at a cloned bacteriophage T7 RNase III site results in strong stabilization of the mRNA relative to the full-length transcript. In contrast, processing by RNase III of the bacteriophage lambda int transcript leads to rapid degradation of the messenger. It is proposed that the mode of cleavage within the RNase III site determines mRNA stability. Single cleavage leaves part of the phage T7 RNase III site in a folded structure at the generated 3' end and stabilizes the upstream mRNA whereas double cleavage at the lambda int site removes the folded structure and accelerates degradation. In addition, the processed transcript is as active a messenger as the unprocessed one and can direct protein synthesis for longer times. This increased efficiency is accompanied by a proportional (3-4 fold) increase in protein levels. In contrast, processing at the lambda int site reduces Int synthesis. Thus, processing may either stabilize mRNA and stimulate gene expression or destabilize a messenger and prevent protein synthesis. The end result appears to be determined by the mode of cleavage within the RNase III site.
Blunt-end ligation of a "filled-in" HindIII, Sal I, Ava I or Bcl I restriction site with a DNA fragment having A, G, C, or T as the terminal 3' nucleotide regenerates the corresponding restriction site. A combination of this property with the action of BAL 31 nuclease which progressively removes base-pairs from the ends of linear DNA, can generate deletions extending to desired pre-selected nucleotides, and introduces unique restriction sites at those positions. Similarly other restriction sites can be used to select for the deletion of sequences between specific di-, tri-, tetra- and penta-nucleotides. Using this method, 10 base pairs were deleted from the end of a restriction fragment carrying the late promoter for bacteriophage T7 gene 1.1, to create a molecule with a unique restriction site at the initiation codon for translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.