Fast image acquisition in magnetic resonance imaging (MRI) is important, due to the need to find ways that help relieve patient’s stress during MRI scans. Methods for fast MRI have been proposed, most notably among them are pMRI (parallel MRI), SWIFT (SWeep Imaging with Fourier Transformation), and compressed sensing (CS) based MRI. Although it promises to significantly reduce acquisition time, applying CS to MRI leads to difficulties with hardware design because of the randomness nature of the measurement matrix used by the conventional CS methods. In this paper, we propose a novel method that combines the above-mentioned three approaches for fast MRI by designing a compound measurement matrix from a series of single measurement matrices corresponding to pMRI, SWIFT, and CS. In our method, the CS measurement matrix is designed to be deterministic via chaotic systems. This chaotic compressed sensing (CCS) measurement matrix, while retaining most features of the random CS matrix, is simpler to realize in hardware. Several compound measurement matrices have been constructed and examined in this work, including CCS-MRI, CCS-pMRI, CCS-SWIFT, and CCS-pSWIFT. Simulation results showed that the proposed method allows an increase in the speed of the MRI acquisition process while not compromising the quality of the acquired MR images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.