IoT applications have been being moved to the cloud during the last decade in order to reduce operating costs and provide more scalable services to users. However, IoT latency-sensitive big data streaming systems (e.g., smart home application) is not suitable with the cloud and needs another model to fit in. Fog computing, aiming at bringing computation, communication, and storage resources from “cloud to ground” closest to smart end-devices, seems to be a complementary appropriate proposal for such type of application. Although there are various research efforts and solutions for deploying and conducting elasticity of IoT big data analytics applications on the cloud, similar work on fog computing is not many. This article firstly introduces AutoFog, a fog-computing framework, which provides holistic deployment and an elasticity solution for fog-based IoT big data analytics applications including a novel mechanism for elasticity provision. Secondly, the article also points out requirements that a framework of IoT big data analytics application on fog environment should support. Finally, through a realistic smart home use case, extensive experiments were conducted to validate typical aspects of our proposed framework.
Machine learning methods have demonstrated promising performance for Content Based Image Retrieval (CBIR) using Relevance Feedback (RF). However, a very limited number of feedback images can significantly degrade the performance of these techniques. In this work, each image is represented by a vector of multiple distance measures corresponding to multiple features. Each feature is considered a sub-query for RF process. In RF process, we propose to use Pareto method to get Pareto points (also called trade-off points) according to different depths. These points are used as relevant queries for the next RF round. Experimental results show that our proposed approach is very effective to improve the performance of the classification engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.