Lead free (1 − x)K 0.5 Na 0.5 NbO 3-xCa(Zn 1/3 Nb 2/3)O 3 (abbreviated KNN-xCZN) ferroelectric ceramics, with x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, have been fabricated by the conventional solid-state reaction method. The effects of CZN content on the structure, microstructure and some optical, electrical properties of KNN-xCZN ceramics were studied in detail. The experimental results showed that the crystal structure of ceramics gradually transformed from orthorhombic phase into pseudo-cubic phase with doping of xCa(Zn 1/3 Nb 2/3)O 3. With increasing of the CZN concentration, the ceramic density increased and reached the highest value (4.29 g/cm 3) at x = 0.08 mol, besides, the grain size of the ceramics decreased gradually, the microstructure more uniform, the grains are packed with clear grain boundaries, fewer pores, especially at x = 0.08 mol. With the dense and fine-grained microstructures, the optical transmission of the ceramics is strong, the ceramic sample with x = 0.08 mol exhibits stably high transmittance above 60% in the visible spectrum and the largest optical band gap energy (E g = 3.0 eV) was obtained. The Curie temperature (T C) decreases when the concentration of CZN increases. The broadness of dielectric peaks around T m indicated a diffusive phase transition for all compositions suggesting the relaxor-like behavior of KNN-xCZN ceramic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.