In this research, new circular and hexagonal photonic crystal fibers (PCFs) filled with chloroform have been designed considering the difference in air hole diameters to optimize the characteristics of the fiber simultaneously. Effective mode area and confinement loss of five PCFs with optimal dispersion have been further studied to find the fiber with a great application value for supercontinuum generation (SCG). Generally, circular PCFs are dominant over hexagonal lattices because of their small effective mode area, low loss, and small dispersion. #CF1 fiber with a lattice constant (Ʌ) of 1.0 μm and filling factor (d1/Ʌ) of 0.65 has an all-normal dispersion with a low value of -1.623 ps/nm/km, a small effective mode area of 1.43 µm2, and a low loss of 2.472 dB/m at 0.945 µm. The effective mode area and confinement loss of #CF2 (Ʌ = 1.0 µm, d1/Ʌ = 0.7) are the smallest of proposed PCFs. #HF1 fiber (Ʌ = 1.0 µm, d1/Ʌ = 0.5) has a very flat dispersion curve in the 1-2 µm wavelength range and a rather small effective mode area. These are the most optimal fibers for two types of lattices, which are very suitable for near-infrared SCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.