Phyllanthus amarus , also known as Bhui Korma in India, is well known for its medicinal properties and is used to treat several diseases worldwide. This study aims to identify phytochemicals from P. amarus and assess their anti-viral activity through in silico methods against the main protease (M Pro ) enzyme of the novel coronavirus. 190 compounds were obtained from literature and docked against 3CLPro and 16 compounds showed great binding affinity with 3CLPro with their values lying between -8.9 kcal/mol to -9.6 kcal/mol. The top two compounds, Myricitrin (CID: 5352000) and Quercetin-3-O-glucuronide (CID: 12004528) gave high binding affinity values of -9.6 kcal/mol and -9.4 kcal/mol respectively and also display favourable binding interactions with the M Pro . Both the compounds were further subjected to molecular dynamics simulation and MM-PBSA based binding free energy calculations. ADMET and drug-likeness properties were studied to assess the pharmacokinetic properties of the compounds. Favourable pharmacokinetic results reinforced the applicability of the compounds assessed. Along with continuous studies being carried out with chemical compounds, research needs to expand into all areas, including the use of natural compounds as drug compounds. The identified hits from this study can be taken further for in vitro and in vivo studies to examine their efficacy against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.