Species' coexistence depends on species-specific resource utilization in a given habitat. Human disturbances in this context can constrain the realized niche by altering their community dynamics. In this study, we considered Western Himalaya as a case study to test the hypothesis that human disturbances influence mesocarnivore coexistence patterns. We regarded red fox and leopard cat as the focal species and assessed the coexistence patterns in low and high human disturbance areas in three dimensions: spatial, temporal and dietary habit. We used camera trap detections and mitochondrial DNA-based species identification of faecal samples. We used generalized linear mixed-effect modelling (GLMM), activity overlap, Levin’s niche breadth and Pianka’s overlap index to capture the spatial, temporal and dietary interactions respectively. We found that red fox and leopard cat coexisted by spatial segregation in low human disturbance area, whereas dietary segregation was the means of coexistence in high human disturbance area. We observed a broader dietary breadth for red fox and a narrower for leopard cat in high human disturbance area. The altered coexistence pattern due to differential human disturbances indicates intensive anthropogenic activities adjacent to natural forests. It can link to increased opportunities for shared spaces between mesocarnivores and humans, leading to future disease spread and conflicts. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human-altered ecosystems. The study elucidates the need for long-term monitoring of wildlife inhabiting interface areas to ensure human and wildlife coexistence.
Species' coexistence depends on species-speci c resource utilization in a given habitat. Human disturbances in this context can constrain the realized niche by altering their community dynamics. In this study, we considered Western Himalaya as a case study to test the hypothesis that human disturbances in uence mesocarnivore coexistence patterns. We regarded red fox and leopard cat as the focal species and assessed the coexistence patterns in low and high human disturbance areas in three dimensions: spatial, temporal and dietary habit. We used camera trap detections and mitochondrial DNA-based species identi cation of faecal samples. We used generalized linear mixed-effect modelling (GLMM), activity overlap, Levin's niche breadth and Pianka's overlap index to capture the spatial, temporal and dietary interactions respectively. We found that red fox and leopard cat coexisted by spatial segregation in low human disturbance area, whereas dietary segregation was the means of coexistence in high human disturbance area. We observed a broader dietary breadth for red fox and a narrower for leopard cat in high human disturbance area. The altered coexistence pattern due to differential human disturbances indicates intensive anthropogenic activities adjacent to natural forests. It can link to increased opportunities for shared spaces between mesocarnivores and humans, leading to future disease spread and con icts. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human-altered ecosystems.The study elucidates the need for long-term monitoring of wildlife inhabiting interface areas to ensure human and wildlife coexistence.
Species' coexistence depends on species-specific resource utilization in a given habitat. Human disturbances in this context can constrain the realized niche by altering their community dynamics. In this study, we considered Western Himalaya as a case study to test the hypothesis that human disturbances influence mesocarnivore coexistence patterns. We regarded red fox and leopard cat as the focal species and assessed the coexistence patterns in low and high human disturbance areas in three dimensions: spatial, temporal and dietary habit. We used camera trap detections and mitochondrial DNA-based species identification of faecal samples. We used generalized linear mixed-effect modelling (GLMM), activity overlap, Levin’s niche breadth and Pianka’s overlap index to capture the spatial, temporal and dietary interactions respectively. We found that red fox and leopard cat coexisted by spatial segregation in low human disturbance area, whereas dietary segregation was the means of coexistence in high human disturbance area. We observed a broader dietary breadth for red fox and a narrower for leopard cat in high human disturbance area. The altered coexistence pattern due to differential human disturbances indicates intensive anthropogenic activities adjacent to natural forests. It can link to increased opportunities for shared spaces between mesocarnivores and humans, leading to future disease spread and conflicts. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human-altered ecosystems. The study elucidates the need for long-term monitoring of wildlife inhabiting interface areas to ensure human and wildlife coexistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.